Improvement of photosynthesis in zooxanthellate corals by autofluorescent chromatophores

Autofluorescent chromatophores were detected in 17 out of 71 zooxanthellate coral species studied. Chromatophores are localized either in the oral gastrodermic (endoderm) or oral epidermis (ectoderm). The pigment granules within the chromatophores (0.5–1.0 μm in diameter) show a brilliant light-blue/turquoise autofluorescence (emission between 430 and 500 nm) after excitation with light of 365–410 nm. All species where the autofluorescent gastrodermal chromatophores form a compact layer, embedding the zooxanthellae, belong to the family Agariciidae. In contrast, some species of the Faviidae (2), Pectiniidae (1) and Mussidae (1) were found to have distinct, autofluorescent chromatophores in the oral epidermis. Autofluorescent pigments of the host may enhance photosynthesis of the symbionts as in Leptoseris fragilis. Short wavelength irradiance, less suitable for photosynthesis, is transformed by host pigments into longer wavelengths which are photosynthetically more effective. Thus, host species possessing autofluorescent chromatophores might have selective advantage over non-fluorescent species, and have the potential to survive in light-limited habitats. Furthermore, the daily period of photosynthesis is extended, thus increasing the energy supply and enhancing the deposition of skeletal carbonate. The absence or presence of chromatophores may have value in taxonomy and could putatively be of plalaeontological and palaeoecological interest.

[1]  H. Fricke,et al.  Mechanisms of amplification of photosynthetically active radiation in the symbiotic deep-water coral Leptoseris fragilis , 1991, Hydrobiologia.

[2]  P. Glaziou,et al.  A study of mucus from the solitary coral Fungia fungites (Scleractinia: Fungiidae) in relation to photobiological UV adaptation , 1993 .

[3]  H. Fricke,et al.  A chromatophore system in the hermatypic, deep-water coral Leptoseris fragilis (Anthozoa: Hexacorallia) , 1985 .

[4]  C. Pillai,et al.  Report on the Stony Corals from the Red Sea , 1983 .

[5]  P. Halldal PHOTOSYNTHETIC CAPACITIES AND PHOTOSYNTHETIC ACTION SPECTRA OF ENDOZOIC ALGAE OF THE MASSIVE CORAL FAVIA , 1968 .

[6]  H. Fricke,et al.  Influence of light on algal symbionts of the deep water coral Leptoseris fragilis , 1993 .

[7]  H. Fricke,et al.  Photoecology of the coral Leptoseris fragilis in the Red Sea twilight zone (an experimental study by submersible) , 1987, Oecologia.

[8]  A. Logan,et al.  UV excitation-fluorescence in polyp tissue of certain Scleractinian corals from Barbados and Bermuda , 1990 .

[9]  Richard A. Cloney,et al.  Ultrastructure of cephalopod chromatophore organs , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[10]  D. L. Fox,et al.  PIGMENTS IN THE COELENTERATA , 1944 .

[11]  A. Spurr A low-viscosity epoxy resin embedding medium for electron microscopy. , 1969, Journal of ultrastructure research.

[12]  川口 四郎 On the physiology of reef corals 4 : study on the pigments , 1943 .

[13]  K. Shibata Pigments and a UV-absorbing substance in corals and a blue-green alga living in the Great Barrier Reef , 1969 .

[14]  A. Oaks,et al.  Influence of Light , 1994 .

[15]  W. Dunlap,et al.  Identification and quantitation of near-UV absorbing compounds (S-320) in a hermatypic scleractinian , 2004, Coral Reefs.

[16]  John E. Tyler,et al.  Transmission of Solar Radiation into Natural Waters , 1976 .

[17]  Mark R. Patterson,et al.  A Chemical Engineering View of Cnidarian Symbioses , 1992 .

[18]  J. B. Pilkington The organization of skeletal tissues in the spines of Echinus esculentus , 1969, Journal of the Marine Biological Association of the United Kingdom.

[19]  H. Fricke,et al.  The Depth Limits of Red Sea Stony Corals: An Ecophysiological Problem (A Deep Diving Survey by Submersible) , 1983 .

[20]  H. Fricke,et al.  Coral host improves photosynthesis of endosymbiotic algae , 1990, Naturwissenschaften.

[21]  E. Padan,et al.  Primary production in a desert-enclosed sea— the Gulf of Elat (Aqaba), Red Sea , 1979 .

[22]  J. Veron,et al.  Scleractinia of Eastern Australia. , 1976 .

[23]  T. Goodwin CHAPTER 2 – Pigments of Coelenterata , 1968 .

[24]  H. Fricke,et al.  Light harvesting by wavelength transformation in a symbiotic coral of the Red Sea twilight zone , 1986 .

[25]  D. Wethey,et al.  Habitat-Related Patterns of Productivity of the Foliaceous Reef Coral, Pavona Praetorta Dana , 1976 .

[26]  J. Veron,et al.  Scleractinia of eastern Australia. Part II : Families Faviidae, Trachyphlliidae , 1977 .

[27]  R. Koschel,et al.  Primary Production , 2021, Tropical Marine Ecology.

[28]  B. D. Scott,et al.  Photosynthesis of phytoplankton and zooxanthellae on a coral reef , 1977 .