Tail Index Regression

In extreme value statistics, the tail index is an important measure to gauge the heavy-tailed behavior of a distribution. Under Pareto-type distributions, we employ the logarithmic function to link the tail index to the linear predictor induced by covariates, which constitutes the tail index regression model. We then propose an approximate log-likelihood function to obtain regression parameter estimators, and subsequently show the asymptotic normality of those estimators. Numerical studies are presented to illustrate theoretical findings.

[1]  S. Resnick Heavy-Tail Phenomena: Probabilistic and Statistical Modeling , 2006 .

[2]  E. Haeusler,et al.  On Asymptotic Normality of Hill's Estimator for the Exponent of Regular Variation , 1985 .

[3]  J. Teugels,et al.  Tail Index Estimation, Pareto Quantile Plots, and Regression Diagnostics , 1996 .

[4]  Paul Deheuvels,et al.  Kernel Estimates of the Tail Index of a Distribution , 1985 .

[5]  W. J. Conover,et al.  Practical Nonparametric Statistics , 1972 .

[6]  Jonathan A. Tawn,et al.  Bivariate extreme value theory: Models and estimation , 1988 .

[7]  Jan Beirlant,et al.  Regression with response distributions of Pareto-type , 2003, Comput. Stat. Data Anal..

[8]  R. A. Groeneveld,et al.  Practical Nonparametric Statistics (2nd ed). , 1981 .

[9]  J. Hüsler,et al.  Statistical Analysis of Extreme Values with Applications to Insurance, Finance, Hydrology and Other Fields , 2007 .

[10]  R. Huisman,et al.  Tail-Index Estimates in Small Samples , 2001 .

[11]  R. Reiss,et al.  Statistical Analysis of Extreme Values-with applications to insurance , 1997 .

[12]  Anthony C. Davison,et al.  Statistics of Extremes , 2015, International Encyclopedia of Statistical Science.

[13]  E. Castillo Extreme value and related models with applications in engineering and science , 2005 .

[14]  P. Hall On Some Simple Estimates of an Exponent of Regular Variation , 1982 .

[15]  L. Haan,et al.  A moment estimator for the index of an extreme-value distribution , 1989 .

[16]  Jan Beirlant,et al.  Tail Index Estimation and an Exponential Regression Model , 1999 .

[17]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[18]  H. Zou,et al.  Composite quantile regression and the oracle Model Selection Theory , 2008, 0806.2905.

[19]  Paul Deheuvels,et al.  Almost sure convergence of the Hill estimator , 1988, Mathematical Proceedings of the Cambridge Philosophical Society.

[20]  B. M. Hill,et al.  A Simple General Approach to Inference About the Tail of a Distribution , 1975 .

[21]  D. Mason Laws of Large Numbers for Sums of Extreme Values , 1982 .

[22]  Sidney I. Resnick,et al.  A Simple Asymptotic Estimate for the Index of a Stable Distribution , 1980 .

[23]  R. Fisher,et al.  Limiting forms of the frequency distribution of the largest or smallest member of a sample , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[24]  C. Borror Practical Nonparametric Statistics, 3rd Ed. , 2001 .

[25]  J. Teugels,et al.  Statistics of Extremes , 2004 .

[26]  J. Corcoran Modelling Extremal Events for Insurance and Finance , 2002 .