Modular cell biology: retroactivity and insulation

Modularity plays a fundamental role in the prediction of the behavior of a system from the behavior of its components, guaranteeing that the properties of individual components do not change upon interconnection. Just as electrical, hydraulic, and other physical systems often do not display modularity, nor do many biochemical systems, and specifically, genetic networks. Here, we study the effect of interconnections on the input–output dynamic characteristics of transcriptional components, focusing on a property, which we call ‘retroactivity’, that plays a role analogous to non‐zero output impedance in electrical systems. In transcriptional networks, retroactivity is large when the amount of transcription factor is comparable to, or smaller than, the amount of promoter‐binding sites, or when the affinity of such binding sites is high. To attenuate the effect of retroactivity, we propose a feedback mechanism inspired by the design of amplifiers in electronics. We introduce, in particular, a mechanism based on a phosphorylation–dephosphorylation cycle. This mechanism enjoys a remarkable insulation property, due to the fast timescales of the phosphorylation and dephosphorylation reactions.

[1]  F. Young Biochemistry , 1955, The Indian Medical Gazette.

[2]  F. Hoppensteadt Singular perturbations on the infinite interval , 1966 .

[3]  Charles Belove,et al.  Solutions manual to accompany electronic circuits, discrete and integrated , 1968 .

[4]  M. Savageau Biochemical systems analysis. II. The steady-state solutions for an n-pool system using a power-law approximation. , 1969, Journal of theoretical biology.

[5]  M. Savageau Biochemical Systems Analysis: A Study of Function and Design in Molecular Biology , 1976 .

[6]  F. Jacob,et al.  Evolution and tinkering. , 1977, Science.

[7]  Donald L. Schilling,et al.  Electronic Circuits: Discrete and Integrated , 1980 .

[8]  B. Magasanik,et al.  Isolation of the nitrogen assimilation regulator NR(I), the product of the glnG gene of Escherichia coli. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[9]  M. Mangel Singular Perturbation Methods in Control: Analysis and Design (Petar Kokotovic, Hassan K. Khalil, and John O’Reilly) , 1988 .

[10]  H. Sauro,et al.  Control analysis of time-dependent metabolic systems. , 1989, Journal of theoretical biology.

[11]  Jan C. Willems,et al.  Almost disturbance decoupling with internal stability , 1989 .

[12]  Keith R.F. Elliott,et al.  Biochemistry, 3rd edn , 1990 .

[13]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[14]  D. Fell Metabolic control analysis: a survey of its theoretical and experimental development. , 1992, The Biochemical journal.

[15]  Bruce A. Francis,et al.  Feedback Control Theory , 1992 .

[16]  R. Heinrich,et al.  The Regulation of Cellular Systems , 1996, Springer US.

[17]  Chi-Ying F. Huang,et al.  Ultrasensitivity in the mitogen-activated protein kinase cascade. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Jan C. Willems,et al.  Introduction to mathematical systems theory: a behavioral approach, Texts in Applied Mathematics 26 , 1999 .

[19]  Christiaan Heij,et al.  Introduction to mathematical systems theory , 1997 .

[20]  A. Arkin,et al.  Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. , 1998, Genetics.

[21]  Tzyh Jong Tarn,et al.  Semiglobal L2 performance bounds for disturbance attenuation in nonlinear systems , 1999, IEEE Trans. Autom. Control..

[22]  J. C Willems Behaviors, Latent Variables, and Interconnections (Special Issue on Mathematical Approaches to System Engineering Expository Articles) , 1999 .

[23]  Christopher C. Moser,et al.  Natural engineering principles of electron tunnelling in biological oxidation–reduction , 1999, Nature.

[24]  J. C. Willems Behaviors,Latent Variables,and lnterconnections (システム工学への数理的アプローチ特集) , 1999 .

[25]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[26]  Boris N. Kholodenko,et al.  Control analysis of stationary forced oscillations. , 1999 .

[27]  B N Kholodenko,et al.  Diffusion control of protein phosphorylation in signal transduction pathways. , 2000, The Biochemical journal.

[28]  D. Lauffenburger Cell signaling pathways as control modules: complexity for simplicity? , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[29]  J. Hofmeyr,et al.  Regulating the cellular economy of supply and demand , 2000, FEBS letters.

[30]  B. Snel,et al.  The identification of functional modules from the genomic association of genes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[31]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[32]  B. Kholodenko,et al.  Modular response analysis of cellular regulatory networks. , 2002, Journal of theoretical biology.

[33]  Reinhart Heinrich,et al.  Mathematical models of protein kinase signal transduction. , 2002, Molecular cell.

[34]  Jan C. Willems,et al.  Introduction to Mathematical Systems Theory. A Behavioral , 2002 .

[35]  M. Mackey,et al.  Feedback regulation in the lactose operon: a mathematical modeling study and comparison with experimental data. , 2003, Biophysical journal.

[36]  Dragan Nesic,et al.  A unified framework for input-to-state stability in systems with two time scales , 2003, IEEE Trans. Autom. Control..

[37]  U. Alon Biological Networks: The Tinkerer as an Engineer , 2003, Science.

[38]  A. Ninfa,et al.  Development of Genetic Circuitry Exhibiting Toggle Switch or Oscillatory Behavior in Escherichia coli , 2003, Cell.

[39]  S.W. Davies,et al.  A genetic circuit amplifier: design and simulation , 2003, IEEE Transactions on NanoBioscience.

[40]  Herbert M Sauro,et al.  Sensitivity analysis of stoichiometric networks: an extension of metabolic control analysis to non-steady state trajectories. , 2003, Journal of theoretical biology.

[41]  H. Sauro,et al.  Quantitative analysis of signaling networks. , 2004, Progress in biophysics and molecular biology.

[42]  Herbert M. Sauro,et al.  The Computational Versatility of Proteomic Signaling Networks , 2004 .

[43]  Edward J. Wood,et al.  Biochemistry (3rd ed.) , 2004 .

[44]  A. Kremling,et al.  Modular analysis of signal transduction networks , 2004, IEEE Control Systems.

[45]  Bernhard O Palsson,et al.  Hierarchical thinking in network biology: the unbiased modularization of biochemical networks. , 2004, Trends in biochemical sciences.

[46]  D. Endy Foundations for engineering biology , 2005, Nature.

[47]  Julio Saez-Rodriguez,et al.  Dissecting the puzzle of life: modularization of signal transduction networks , 2005, Comput. Chem. Eng..

[48]  Uri Alon,et al.  An Introduction to Systems Biology , 2006 .

[49]  E. Andrianantoandro,et al.  Synthetic biology: new engineering rules for an emerging discipline , 2006, Molecular systems biology.

[50]  H. Mori,et al.  Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection , 2006, Molecular systems biology.

[51]  A Kremling,et al.  Systems biology--an engineering perspective. , 2007, Journal of biotechnology.

[52]  Leif H. Finkel,et al.  BIOENGINEERING MODELS OF CELL SIGNALING , 2007 .

[53]  John J. Tyson,et al.  Modeling Networks of Coupled Enzymatic Reactions Using the Total Quasi-Steady State Approximation , 2007, PLoS Comput. Biol..

[54]  H. Sauro,et al.  MAPK Cascades as Feedback Amplifiers , 2007, 0710.5195.

[55]  O Mason,et al.  Graph theory and networks in Biology. , 2006, IET systems biology.

[56]  Eduardo Sontag Input to State Stability: Basic Concepts and Results , 2008 .

[57]  Uri Alon,et al.  Design principles of biological circuits , 2009 .