The Andrews-Curtis Conjecture and Black Box Groups
暂无分享,去创建一个
[1] Alexei D. Miasnikov,et al. Genetic Algorithms and the Andrews-Curtis Conjecture , 1999, Int. J. Algebra Comput..
[2] T. Weigel. Residual properties of free groups, II , 1992 .
[3] S. Akbulut,et al. A potential smooth counterexample in dimension 4 to the Poincare conjecture, the Schoenflies conjecture, and the Andrews-Curtis conjecture , 1985 .
[4] T. Weigel. Residual properties of free groups, III , 1992 .
[5] Page 2 Conjectures. ON THE CONJECTURES OF , 1998 .
[6] Alexandre V. Borovik,et al. Probabilistic recognition of orthogo-nal and symplectic groups , 1999 .
[7] Igor Pak,et al. The product replacement algorithm is polynomial , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.
[8] William M. Kantor,et al. Black Box Classical Groups , 2001 .
[9] Robert R. Alfano,et al. Recent Advances in the Uses of Light in Physics, Chemistry, Engineering, and Medicine: 19-21 June 1991, the City College of New York , 1992 .
[10] John J. Cannon,et al. The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..
[11] László Babai,et al. Randomization in group algorithms: Conceptual questions , 1995, Groups and Computation.
[12] Residual properties of free groups , 1972 .
[13] C. Hog-Angeloni,et al. Two-Dimensional Homotopy and Combinatorial Group Theory: The Andrews-Curtis Conjecture and its Generalizations , 1993 .
[14] N. Gordeev,et al. On the conjectures of J. Thompson and O. Ore , 1998 .
[15] Orthogonal and Symplectic Black Box Groups, Revisited , 2001, math/0110234.
[16] Ronald L. Graham,et al. The graph of generating sets of an abelian group , 1999 .
[17] C. R. Leedham-Green,et al. Recognising tensor-induced matrix groups , 2002 .
[18] Yoav Dvir,et al. Covering properties of permutation groups , 1985 .
[19] B. H. Neumann,et al. Zwei Klassen charakteristischer Untergruppen und ihre Faktorgruppen. Erhard Schmidt zum 75. Geburtstag. B. H. und Neumann, Charakteristische Untergruppen , 1950 .
[20] Aner Shalev,et al. Diameters of finite simple groups: sharp bounds and applications , 2001 .
[21] Sergey Bratus,et al. Fast Constructive Recognition of a Black Box Group Isomorphic to Sn or An using Goldbach's Conjecture , 2000, J. Symb. Comput..
[22] Charles F. Miller,et al. Combinatorial Group Theory , 2002 .
[23] B. H. Neumann,et al. Zwei Klassen charakteristischer Untergruppen und ihre Faktorgruppen , 1950 .
[24] W. Magnus,et al. Combinatorial Group Theory: COMBINATORIAL GROUP THEORY , 1967 .
[25] Igor Pak,et al. The product replacement algorithm and Kazhdan’s property (T) , 2000 .
[26] Robert G. Burns,et al. Balanced Presentations of the Trivial Group , 1993, Bulletin of the London Mathematical Society.
[27] Scott H. Murray,et al. Generating random elements of a finite group , 1995 .
[28] Alexei G. Myasnikov,et al. Balanced presentations of the trivial group on two generators and the Andrews-Curtis conjecture , 2003, ArXiv.
[29] J. J. Andrews,et al. Free groups and handlebodies , 1965 .
[30] G. Moran,et al. Groups with a small covering number , 1985 .
[31] George Havas,et al. Breadth-First Search and the Andrews-Curtis Conjecture , 2003, Int. J. Algebra Comput..
[32] László Babai,et al. Local expansion of vertex-transitive graphs and random generation in finite groups , 1991, STOC '91.
[33] W. Gaschütz. Zu einem von B. H. und H. Neumann gestellten Problem , 1955 .
[34] L. Babai,et al. Groups St Andrews 1997 in Bath, I: A polynomial-time theory of black box groups I , 1999 .
[35] M. Herzog,et al. Covering numbers for Chevalley groups , 1999 .