The Andrews-Curtis Conjecture and Black Box Groups

The paper discusses the Andrews–Curtis graph Δk(G,N) of a normal subgroup N in a group G. The vertices of the graph are k-tuples of elements in N which generate N as a normal subgroup; two vertices are connected if one of them can be obtained from another by certain elementary transformations. This object appears naturally in the theory of black box finite groups and in the Andrews–Curtis conjecture in algebraic topology [3]. We suggest an approach to the Andrews–Curtis conjecture based on the study of Andrews–Curtis graphs of finite groups, discuss properties of Andrews–Curtis graphs of some classes of finite groups and results of computer experiments with generation of random elements of finite groups by random walks on their Andrews–Curtis graphs.

[1]  Alexei D. Miasnikov,et al.  Genetic Algorithms and the Andrews-Curtis Conjecture , 1999, Int. J. Algebra Comput..

[2]  T. Weigel Residual properties of free groups, II , 1992 .

[3]  S. Akbulut,et al.  A potential smooth counterexample in dimension 4 to the Poincare conjecture, the Schoenflies conjecture, and the Andrews-Curtis conjecture , 1985 .

[4]  T. Weigel Residual properties of free groups, III , 1992 .

[5]  Page 2 Conjectures ON THE CONJECTURES OF , 1998 .

[6]  Alexandre V. Borovik,et al.  Probabilistic recognition of orthogo-nal and symplectic groups , 1999 .

[7]  Igor Pak,et al.  The product replacement algorithm is polynomial , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[8]  William M. Kantor,et al.  Black Box Classical Groups , 2001 .

[9]  Robert R. Alfano,et al.  Recent Advances in the Uses of Light in Physics, Chemistry, Engineering, and Medicine: 19-21 June 1991, the City College of New York , 1992 .

[10]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[11]  László Babai,et al.  Randomization in group algorithms: Conceptual questions , 1995, Groups and Computation.

[12]  Residual properties of free groups , 1972 .

[13]  C. Hog-Angeloni,et al.  Two-Dimensional Homotopy and Combinatorial Group Theory: The Andrews-Curtis Conjecture and its Generalizations , 1993 .

[14]  N. Gordeev,et al.  On the conjectures of J. Thompson and O. Ore , 1998 .

[15]  Orthogonal and Symplectic Black Box Groups, Revisited , 2001, math/0110234.

[16]  Ronald L. Graham,et al.  The graph of generating sets of an abelian group , 1999 .

[17]  C. R. Leedham-Green,et al.  Recognising tensor-induced matrix groups , 2002 .

[18]  Yoav Dvir,et al.  Covering properties of permutation groups , 1985 .

[19]  B. H. Neumann,et al.  Zwei Klassen charakteristischer Untergruppen und ihre Faktorgruppen. Erhard Schmidt zum 75. Geburtstag. B. H. und Neumann, Charakteristische Untergruppen , 1950 .

[20]  Aner Shalev,et al.  Diameters of finite simple groups: sharp bounds and applications , 2001 .

[21]  Sergey Bratus,et al.  Fast Constructive Recognition of a Black Box Group Isomorphic to Sn or An using Goldbach's Conjecture , 2000, J. Symb. Comput..

[22]  Charles F. Miller,et al.  Combinatorial Group Theory , 2002 .

[23]  B. H. Neumann,et al.  Zwei Klassen charakteristischer Untergruppen und ihre Faktorgruppen , 1950 .

[24]  W. Magnus,et al.  Combinatorial Group Theory: COMBINATORIAL GROUP THEORY , 1967 .

[25]  Igor Pak,et al.  The product replacement algorithm and Kazhdan’s property (T) , 2000 .

[26]  Robert G. Burns,et al.  Balanced Presentations of the Trivial Group , 1993, Bulletin of the London Mathematical Society.

[27]  Scott H. Murray,et al.  Generating random elements of a finite group , 1995 .

[28]  Alexei G. Myasnikov,et al.  Balanced presentations of the trivial group on two generators and the Andrews-Curtis conjecture , 2003, ArXiv.

[29]  J. J. Andrews,et al.  Free groups and handlebodies , 1965 .

[30]  G. Moran,et al.  Groups with a small covering number , 1985 .

[31]  George Havas,et al.  Breadth-First Search and the Andrews-Curtis Conjecture , 2003, Int. J. Algebra Comput..

[32]  László Babai,et al.  Local expansion of vertex-transitive graphs and random generation in finite groups , 1991, STOC '91.

[33]  W. Gaschütz Zu einem von B. H. und H. Neumann gestellten Problem , 1955 .

[34]  L. Babai,et al.  Groups St Andrews 1997 in Bath, I: A polynomial-time theory of black box groups I , 1999 .

[35]  M. Herzog,et al.  Covering numbers for Chevalley groups , 1999 .