A Brief History of 30 Years of Model Updating in Structural Dynamics

Since the development of the Finite Element (FE) method at the University of California Berkeley and the Boeing Company in the 1960s, the question of appropriateness of a model has always preoccupied developers and practicing engineers. Because of the early focus on predicting the linear vibrations of coupled systems for aerospace and civil engineering applications, test-analysis reconciliation initially consisted in updating the FE matrices such that their eigen-properties reproduce the identified resonant frequencies and mode shape vectors. As the FE method increased in sophistication in the following decades, and computational resources became widespread, test-analysis reconciliation evolved beyond optimal matrix updating to include sensitivity and residual-based methods that attempted to calibrate individual element matrices or design parameters. Fueled by an ever-increasing diversity of applications, FE model updating expanded beyond the correlation of modal response to handle frequency response functions, static deflections, and time-domain waveforms. Component mode synthesis concepts were progressively integrated to handle the spatial mismatch between measurement points of a structure and the FE discretization where the spatial information is predicted. This publication briefly overviews the first 30 years of FE model updating development, from the mid-1960s to the mid-1990s, because most of the technology currently available originates in this period. FE model updating methods are categorized into broad categories that each offer their own benefits and limitations. Potential growth areas, such as application to nonlinear dynamics, are discussed.

[1]  F. Hemez,et al.  REVIEW AND ASSESSMENT OF MODEL UPDATING FOR NON-LINEAR, TRANSIENT DYNAMICS , 2001 .

[2]  F. Hemez,et al.  Updating finite element dynamic models using an element-by-element sensitivity methodology , 1993 .

[3]  Irving Ojalvo,et al.  Consistent first-order theory for structural model parameter improvement based upon dynamic test data , 1992 .

[4]  David C. Zimmerman,et al.  Eigenstructure assignment approach for structural damage detection , 1992 .

[5]  William J. Anderson,et al.  Inverse perturbation method for structural redesign with frequency and mode shape constraints , 1984 .

[6]  François M. Hemez,et al.  MODEL VALIDATION AND UNCERTAINTY QUANTIFICATION. , 2000 .

[7]  Noboru Kikuchi,et al.  Adaptive finite element methods for shape optimization of linearly elastic structures , 1986 .

[8]  G. Touzot,et al.  The finite element method displayed , 1984 .

[9]  Patrick J. Roache,et al.  Verification and Validation in Computational Science and Engineering , 1998 .

[10]  M. Imregun,et al.  A review of model updating techniques , 1991 .

[11]  François M. Hemez,et al.  Simulating the dynamics of wind turbine blades: part I, model development and verification , 2011 .

[12]  Daniel J. Inman,et al.  Damage Prognosis For Aerospace, Civil and Mechanical Systems Preface , 2005 .

[13]  James M. Ricles,et al.  Damage detection in elastic structures using vibratory residual forces and weighted sensitivity , 1992 .

[14]  Charles R. Farrar,et al.  Finite element analysis of the I-40 bridge over the Rio Grande , 1996 .

[15]  D. E. J.H. Argyris,et al.  Energy Theorems and Structural Analysis: A Generalized Discourse with Applications on Energy Principles of Structural Analysis Including the Effects of Temperature and Non‐Linear Stress‐Strain Relations Part II. Applications to Thermal Stress Problems and St. Venant Torsion , 1954 .

[16]  D. Joseph Mook,et al.  Estimation and identification of nonlinear dynamic systems , 1988 .

[17]  O. Zienkiewicz The Finite Element Method In Engineering Science , 1971 .

[18]  G. Kerschen,et al.  Parameter identification of nonlinear mechanical systems using Proper Orthogonal Decomposition , 2000 .

[19]  John E. Mottershead,et al.  Finite Element Model Updating in Structural Dynamics , 1995 .

[20]  Yi Lin,et al.  An iterative algorithm for solving inverse problems in structural dynamics , 1983 .

[21]  D. C. Zimmerman,et al.  Criteria for modeling accuracy : A state-of-the-practice survey , 2000 .

[22]  Sankaran Mahadevan,et al.  Validation of models with multivariate output , 2006, Reliab. Eng. Syst. Saf..

[23]  Hoon Sohn,et al.  A review of structural health monitoring literature 1996-2001 , 2002 .

[24]  Alex Berman,et al.  Theory of Incomplete Models of Dynamic Structures , 1971 .

[25]  M. Baruch Optimal correction of mass and stiffness matrices using measured modes , 1982 .

[26]  David C. Zimmerman,et al.  Correcting finite element models using a symmetric eigenstructure assignment technique , 1990 .

[27]  Ray W. Clough Original Formulation of the Finite Element Method , 1989 .

[28]  S. Smith,et al.  SECANT-METHOD ADJUSTMENT FOR STRUCTURAL MODELS , 1989 .

[29]  Etienne Balmes,et al.  PARAMETRIC FAMILIES OF REDUCED FINITE ELEMENT MODELS. THEORY AND APPLICATIONS , 1996 .

[30]  C. R. Rao,et al.  Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .

[31]  John E. Mottershead,et al.  Model Updating In Structural Dynamics: A Survey , 1993 .

[32]  François M. Hemez,et al.  Simulating the dynamics of wind turbine blades: part II, model validation and uncertainty quantification , 2013 .

[33]  J. D. Collins,et al.  Statistical Identification of Structures , 1973 .

[34]  J. A. Garba,et al.  Application of perturbation methods to improve analytical model correlation with test data. [for Viking Propulsion Subsystem] , 1977 .

[35]  K. D. Dippery,et al.  An optimal control approach to nonlinear system identification , 1998 .

[36]  J. Arora,et al.  Constrained conjugate directions methods for design optimization of large systems , 1992 .

[37]  François M. Hemez Uncertainty Quantification and the Verification and Validation of Computational Models , 2005 .

[38]  M. Imregun,et al.  Technical Article: practical articles in shock and vibration technology , 1991 .

[39]  J. Chen,et al.  Analytical Model Improvement Using Modal Test Results , 1980 .

[40]  D. Kammer Optimum approximation for residual stiffness in linear system identification , 1988 .

[41]  A. Berman,et al.  Improvement of a Large Analytical Model Using Test Data , 1983 .

[42]  Noureddine Bouhaddi,et al.  Component mode synthesis (CMS) based on an enriched ritz approach for efficient structural optimization , 2006 .

[43]  Pierre Ladevèze,et al.  Updating Structural Dynamic Models with Emphasis on the Damping Properties , 1998 .

[44]  G. Lallement,et al.  Dominant error localisation in a finite element model of a mechanical structure , 1987 .

[45]  De Veubeke,et al.  Variational principles and the patch test , 1974 .

[46]  Charles R. Farrar,et al.  VIBRATION TESTING OF THE I-40 BRIDGE BEFORE AND AFTER THE INTRODUCTION OF DAMAGE. , 1994 .

[47]  A. Kabe Stiffness matrix adjustment using mode data , 1985 .

[48]  T. K. Hasselman,et al.  Principal components analysis for nonlinear model correlation, updating and uncertainty evaluation , 1998 .

[49]  J. H. Argyris,et al.  Energy theorems and structural analysis , 1960 .

[50]  Sankaran Mahadevan,et al.  Validation and error estimation of computational models , 2006, Reliab. Eng. Syst. Saf..

[51]  Richard B. Nelson,et al.  Simplified calculation of eigenvector derivatives , 1976 .

[52]  J. R. Kamm,et al.  A Brief Overview of the State-of-the-Practice and Current Challenges of Solution Verification , 2008 .

[53]  Roland Glowinski,et al.  An introduction to the mathematical theory of finite elements , 1976 .

[54]  M. Bampton,et al.  Coupling of substructures for dynamic analyses. , 1968 .

[55]  George Ellis,et al.  Model Development and Verification , 2012 .

[56]  Daniel J. Inman,et al.  Structural dynamics @ 2000 : current status and future directions , 2001 .

[57]  W. Hurty On the dynamic analysis of structural systems using component modes , 1964 .

[58]  Sean P. Kenny,et al.  Eigenvalue and Eigenvector Approximate Analysis for Repeated Eigenvalue Problems , 1992 .