Kinetics and product distribution studies on ruthenium-promoted cobalt/alumina Fischer-Tropsch synthesis catalyst

Hydrocarbon production rates and distributions on ruthenium promoted alumina supported cobalt Fischer-Tropsch synthesis (FTS) catalyst were studied by the concept of two superimposed Anderson-Schulz-Flory (ASF) distributions. The results indicated that the characterizing growth probabilities α1 and α2 were strongly dependent on reaction conditions. By increasing the H2/CO partial pressure ratios and reaction temperatures, deviation from normal ASF distribution decreases and the double-α-ASF distribution changes into a straight line. Based on the concept of double-α-ASF distribution, a useful rate equation for the production of hydrocarbons under industrial reaction conditions is obtained.

[1]  C. Satterfield,et al.  Liquid accumulation in catalyst pores in a Fischer-Tropsch fixed-bed reactor , 1985 .

[2]  M. Dry Catalytic aspects of industrial Fischer-Tropsch synthesis , 1982 .

[3]  Ian C. Yates,et al.  Analysis and prediction of product distributions of the Fischer-Tropsch synthesis , 1988 .

[4]  H. Suhl,et al.  Models of hydrocarbon product distributions in Fischer–Tropsch synthesis. I , 1981 .

[5]  The Influence of the Promoter K2CO3 in Iron Catalysts on the Carbon Number Distribution of Fischer‐Tropsch‐Products , 1985 .

[6]  Alexis T. Bell,et al.  Fischer-Tropsch synthesis over reduced and unreduced iron oxide catalysts , 1986 .

[7]  Secondary effects in the Fischer-Tropsch synthesis , 1982 .

[8]  C. H. Bartholomew Chapter 5 Recent Developments in Fischer-Tropsch Catalysis , 1991 .

[9]  R. Anderson,et al.  The Fischer-Tropsch Synthesis , 1984 .

[10]  Bohdan W. Wojciechowski,et al.  The Kinetics of the Fischer-Tropsch Synthesis , 1988 .

[11]  C. Satterfield,et al.  Product distributions of the Fischer-Tropsch synthesis on precipitated iron catalysts , 1989 .

[12]  I. Puskas,et al.  Comments about the causes of deviations from the Anderson–Schulz–Flory distribution of the Fischer–Tropsch reaction products , 2003 .

[13]  Mehdi Ahmadi Marvast,et al.  Effect of Mg, La and Ca promoters on the structure and catalytic behavior of iron-based catalysts in Fischer–Tropsch synthesis , 2008 .

[14]  A. Tavasoli,et al.  Study on products distribution of iron and iron–zeolite catalysts in Fischer–Tropsch synthesis , 2008 .

[15]  R. B. Anderson,et al.  Composition of Synthetic Liquid Fuels. I. Product Distribution and Analysis of C5—C8 Paraffin Isomers from Cobalt Catalyst1 , 1950 .

[16]  Fischer-Tropsch synthesis on a precipitated iron catalyst , 1981 .

[17]  H. Kölbel,et al.  The Fischer-Tropsch Synthesis in the Liquid Phase , 1980 .

[18]  R. E. Pauls,et al.  Telomerization Model for Cobalt-Catalyzed Fischer-Tropsch Products , 1993 .

[19]  J. Gaube,et al.  Fischer-Tropsch-Synthese. Neuere Untersuchungen und Entwicklungen , 1983 .

[20]  J. Gaube,et al.  Studies on product distributions of iron and cobalt catalyzed Fischer–Tropsch synthesis , 1999 .

[21]  Charles N. Satterfield,et al.  Carbon number distribution of Fischer-Tropsch products formed on an iron catalyst in a slurry reactor , 1982 .

[22]  C. Satterfield,et al.  EVIDENCE FOR TWO CHAIN GROWTH PROBABILITIES ON IRON CATALYSTS IN THE FISCHER‐TROPSCH SYNTHESIS , 1984 .

[23]  G. V. D. Laan,et al.  Kinetics and Selectivity of the Fischer–Tropsch Synthesis: A Literature Review , 1999 .

[24]  J. Longwell,et al.  Product distribution from iron catalysts in Fischer-Tropsch slurry reactors , 1982 .