The Pale Green Dot: A Method to Characterize Proxima Centauri b Using Exo-Aurorae

We examine the feasibility of detecting auroral emission from the potentially habitable exoplanet Proxima Centauri b. Detection of aurorae would yield an independent confirmation of the planet’s existence, constrain the presence and composition of its atmosphere, and determine the planet’s eccentricity and inclination, thereby breaking the mass-inclination degeneracy. If Proxima Centauri b is a terrestrial world with an Earth-like atmosphere and magnetic field, we estimate that the power at the 5577 Å O i auroral line is on the order of 0.1 TW under steady-state stellar wind, or ∼100× stronger than that on Earth. This corresponds to a planet–star contrast ratio of in a narrow band about the 5577 Å line, though higher contrast ( ) may be possible during periods of strong magnetospheric disturbance (auroral power 1–10 TW). We searched the Proxima Centauri b HARPS data for the 5577 Å line and for other prominent oxygen and nitrogen lines, but find no signal, indicating that the O i auroral line contrast must be lower than (with power ≲3000 TW), consistent with our predictions. We find that observations of 0.1 TW auroral emission lines are likely infeasible with current and planned telescopes. However, future observations with a space-based coronagraphic telescope or a ground-based extremely large telescope (ELT) with a coronagraph could push sensitivity down to terawatt oxygen aurorae (contrast ) with exposure times of ∼1 day. If a coronagraph design contrast of 10−7 can be achieved with negligible instrumental noise, a future concept ELT could observe steady-state auroral emission in a few nights.

[1]  John M. Collins Calculations of Periodicity From H Alpha Profiles of Proxima Centauri , 2017 .

[2]  M. Deleuil,et al.  POSSIBLE INTERNAL STRUCTURES AND COMPOSITIONS OF PROXIMA CENTAURI b , 2016, 1609.09757.

[3]  J. Drake,et al.  THE SPACE WEATHER OF PROXIMA CENTAURI b , 2016, 1609.09076.

[4]  Matthias Y. He,et al.  First limits on the occurrence rate of short-period planets orbiting brown dwarfs , 2016, 1609.05053.

[5]  X. Delfosse,et al.  Atmospheric characterization of Proxima b by coupling the Sphere high-contrast imager to the Espresso spectrograph , 2016, 1609.03082.

[6]  J. Zuluaga,et al.  Magnetic properties of Proxima Centauri b analogues , 2016, 1609.00707.

[7]  Edward W. Schwieterman,et al.  The Habitability of Proxima Centauri b: Environmental States and Observational Discriminants , 2016, Astrobiology.

[8]  Laura Kreidberg,et al.  PROSPECTS FOR CHARACTERIZING THE ATMOSPHERE OF PROXIMA CENTAURI b , 2016, 1608.07345.

[9]  L. F. Sarmiento,et al.  A terrestrial planet candidate in a temperate orbit around Proxima Centauri , 2016, Nature.

[10]  Daniel Foreman-Mackey,et al.  The Habitability of Proxima Centauri b I: Evolutionary Scenarios , 2016, 1608.06919.

[11]  E. Guinan,et al.  The habitability of Proxima Centauri b. I. Irradiation, rotation and volatile inventory from formation to the present , 2016, 1608.06813.

[12]  Jaymie M. Matthews,et al.  MOST OBSERVATIONS OF OUR NEAREST NEIGHBOR: FLARES ON PROXIMA CENTAURI , 2016, 1608.06672.

[13]  Ignasi Ribas,et al.  The habitability of Proxima Centauri b II. Possible climates and Observability , 2016, 1608.06827.

[14]  Olivier Guyon,et al.  The Habitable Exoplanet (HabEx) Imaging Mission: preliminary science drivers and technical requirements , 2016, Astronomical Telescopes + Instrumentation.

[15]  Dimitar Sasselov,et al.  PREDICTIONS OF THE ATMOSPHERIC COMPOSITION OF GJ 1132b , 2016, 1607.03906.

[16]  P. Magain,et al.  Temperate Earth-sized planets transiting a nearby ultracool dwarf star , 2016, Nature.

[17]  Xavier Bonfils,et al.  A rocky planet transiting a nearby low-mass star , 2015, Nature.

[18]  R. Barnes,et al.  Tidal Heating of Earth-like Exoplanets around M Stars: Thermal, Magnetic, and Orbital Evolutions , 2015, Astrobiology.

[19]  Mathieu Barthelemy,et al.  Prediction of blue, red and green aurorae at Mars , 2015 .

[20]  S. Gezari,et al.  From Cosmic Birth to Living Earths: The Future of UVOIR Space Astronomy , 2015, 1507.04779.

[21]  Tyler D. Robinson,et al.  Characterizing Rocky and Gaseous Exoplanets with 2 m Class Space-based Coronagraphs , 2015, 1507.00777.

[22]  Matthias Schock,et al.  Thirty Meter Telescope Detailed Science Case: 2015 , 2015, 1505.01195.

[23]  Remko Stuik,et al.  Combining high-dispersion spectroscopy with high contrast imaging : Probing rocky planets around our nearest neighbors , 2015, 1503.01136.

[24]  J. Fortney,et al.  Habitable evaporated cores: transforming mini-Neptunes into super-Earths in the habitable zones of M dwarfs. , 2015, Astrobiology.

[25]  L. Delchambre Weighted principal component analysis: a weighted covariance eigendecomposition approach , 2014, 1412.4533.

[26]  F. Zerbi,et al.  Exoplanet Science with the European Extremely Large Telescope. The Case for Visible and Near-IR Spectroscopy at High Resolution , 2014, 1412.1048.

[27]  R. Luger,et al.  Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwarfs. , 2014, Astrobiology.

[28]  A. Burrows,et al.  Thermal structure of an exoplanet atmosphere from phase-resolved emission spectroscopy , 2014, Science.

[29]  A. Wolfgang,et al.  HOW ROCKY ARE THEY? THE COMPOSITION DISTRIBUTION OF KEPLER’S SUB-NEPTUNE PLANET CANDIDATES WITHIN 0.15 AU , 2014, 1409.2982.

[30]  J. Lilensten,et al.  Can hydrogen coronae be inferred around a CO2-dominated exoplanetary atmosphere? , 2014 .

[31]  J. Richardson,et al.  Solar wind‐magnetosphere energy coupling function fitting: Results from a global MHD simulation , 2014 .

[32]  L. Rogers MOST 1.6 EARTH-RADIUS PLANETS ARE NOT ROCKY , 2014, 1407.4457.

[33]  K. Poppenhaeger,et al.  MAGNETOSPHERIC STRUCTURE AND ATMOSPHERIC JOULE HEATING OF HABITABLE PLANETS ORBITING M-DWARF STARS , 2014, 1405.7707.

[34]  Robert T. Zellem,et al.  THE 4.5 μm FULL-ORBIT PHASE CURVE OF THE HOT JUPITER HD 209458b , 2014, 1405.5923.

[35]  Nancy Janet Chanover,et al.  The effect of solar flares, coronal mass ejections, and solar wind streams on Venus’ 5577 Å oxygen green line , 2014 .

[36]  N. Murakami,et al.  SPECTROSCOPIC CORONAGRAPHY FOR PLANETARY RADIAL VELOCIMETRY OF EXOPLANETS , 2014, 1404.5712.

[37]  R. J. de Kok,et al.  Carbon monoxide and water vapor in the atmosphere of the non-transiting exoplanet HD 179949 b , 2014, 1404.3769.

[38]  Andrew W. Serio,et al.  First light of the Gemini Planet Imager , 2014, Proceedings of the National Academy of Sciences.

[39]  F. Ozel,et al.  Enduring Quests-Daring Visions (NASA Astrophysics in the Next Three Decades) , 2014, 1401.3741.

[40]  Tommi Koskinen,et al.  Calculation of the H Lyman α emission of the hot Jupiters HD 209458b and HD 189733b , 2013 .

[41]  D. Charbonneau,et al.  THE OCCURRENCE RATE OF SMALL PLANETS AROUND SMALL STARS , 2013, 1302.1647.

[42]  Antonin Bouchez,et al.  Giant Magellan Telescope: overview , 2012, Other Conferences.

[43]  Frantz Martinache,et al.  How ELTs will acquire the first spectra of rocky habitable planets , 2012, Other Conferences.

[44]  S. Albrecht,et al.  The signature of orbital motion from the dayside of the planet τ Boötis b , 2012, Nature.

[45]  Jonathan J. Fortney,et al.  HOW THERMAL EVOLUTION AND MASS-LOSS SCULPT POPULATIONS OF SUPER-EARTHS AND SUB-NEPTUNES: APPLICATION TO THE KEPLER-11 SYSTEM AND BEYOND , 2012, 1205.0010.

[46]  B. Bumble,et al.  A superconducting focal plane array for ultraviolet, optical, and near-infrared astrophysics. , 2011, Optics express.

[47]  A. Belu,et al.  Thermal phase curves of nontransiting terrestrial exoplanets - II. Characterizing airless planets , 2011, 1110.3087.

[48]  P. Zarka,et al.  Modeling the radio signature of the orbital parameters, rotation, and magnetic field of exoplanets , 2011 .

[49]  T. Mazeh,et al.  Photometric detection of non-transiting short-period low-mass companions through the beaming, ellipsoidal and reflection effects in Kepler and CoRoT light curves , 2011, 1106.2713.

[50]  P. Olson,et al.  Optimal dynamos in the cores of terrestrial exoplanets: Magnetic field generation and detectability , 2011 .

[51]  Franck Selsis,et al.  Thermal phase curves of nontransiting terrestrial exoplanets - I. Characterizing atmospheres , 2011, 1104.4763.

[52]  S. Seager,et al.  A NEW 24 μm PHASE CURVE FOR υ ANDROMEDAE b , 2010, 1008.0393.

[53]  Cynthia S. Froning,et al.  SEARCHING FOR FAR-ULTRAVIOLET AURORAL/DAYGLOW EMISSION FROM HD 209458b , 2010 .

[54]  D. Ren,et al.  High-contrast coronagraph for ground-based imaging of Jupiter-like planets , 2009, 0910.5355.

[55]  G. Basri,et al.  The moderate magnetic field of the flare star Proxima Centauri , 2008, 0808.2986.

[56]  J. Bochanski,et al.  CONSTRAINING THE AGE–ACTIVITY RELATION FOR COOL STARS: THE SLOAN DIGITAL SKY SURVEY DATA RELEASE 5 LOW-MASS STAR SPECTROSCOPIC SAMPLE , 2007, 0712.1590.

[57]  David Charbonneau,et al.  The 3.6-8.0 μm Broadband Emission Spectrum of HD 209458b: Evidence for an Atmospheric Temperature Inversion , 2007, 0709.3984.

[58]  Amsterdam,et al.  Predicting low-frequency radio fluxes of known extrasolar planets , 2007, 0806.0327.

[59]  Pierre Riaud,et al.  Improving Earth-like planets' detection with an ELT: the differential radial velocity experiment , 2007 .

[60]  D. Charbonneau,et al.  Hot nights on extrasolar planets: mid‐infrared phase variations of hot Jupiters , 2007, 0705.1189.

[61]  David Charbonneau,et al.  A map of the day–night contrast of the extrasolar planet HD 189733b , 2007, Nature.

[62]  Ignasi Ribas,et al.  Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. I. CME impact on expected magnetospheres of Earth-like exoplanets in close-in habitable zones. , 2007, Astrobiology.

[63]  U. Motschmann,et al.  MHD simulation scenarios of the stellar wind interaction with Hot Jupiter magnetospheres , 2007 .

[64]  E. Agol Rounding up the wanderers: optimizing coronagraphic searches for extrasolar planets , 2006, astro-ph/0610697.

[65]  M. Marley,et al.  Planetary Radii across Five Orders of Magnitude in Mass and Stellar Insolation: Application to Transits , 2006, astro-ph/0612671.

[66]  C. Fabron,et al.  SPHERE: a planet finder instrument for the VLT , 2006, Astronomical Telescopes + Instrumentation.

[67]  N. Chanover,et al.  The Venus nightglow: Ground-based observations and chemical mechanisms , 2006 .

[68]  P. Zarka Plasma interactions of exoplanets with their parent star and associated radio emissions , 2006 .

[69]  J. Linsky,et al.  New Mass-Loss Measurements from Astrospheric Lyα Absorption , 2005, astro-ph/0506401.

[70]  Oleg Korablev,et al.  Discovery of an aurora on Mars , 2005, Nature.

[71]  J. W. V. Storey,et al.  Auroral Contribution to Sky Brightness for Optical Astronomy on the Antarctic Plateau , 2005, Publications of the Astronomical Society of Australia.

[72]  B. Cecconi,et al.  An Earth-like correspondence between Saturn's auroral features and radio emission , 2005, Nature.

[73]  J. Drake,et al.  The Density of Coronal Plasma in Active Stellar Coronae , 2004, astro-ph/0405019.

[74]  David S. Smith,et al.  Transport of Ionizing Radiation in Terrestrial-like Exoplanet Atmospheres , 2003, astro-ph/0308311.

[75]  K. Oyama,et al.  Photoelectron flux and nightglow emissions of 5577 and 6300 Å due to solar wind electron precipitation in Martian atmosphere , 2002 .

[76]  H. Ford,et al.  Imaging Spectroscopy for Extrasolar Planet Detection , 2002, astro-ph/0209078.

[77]  J. Gérard,et al.  Total electron and proton energy input during auroral substorms: Remote sensing with IMAGE-FUV , 2002 .

[78]  J. Connerney,et al.  Magnetic field of Mars: Summary of results from the aerobraking and mapping orbits , 2001 .

[79]  T. Bida,et al.  Discovery of the atomic oxygen green line in the Venus night airglow. , 2001, Science.

[80]  D. Strobel,et al.  Io's ultraviolet aurora: Remote sensing of Io's interaction , 2000 .

[81]  A. Bhardwaj,et al.  Auroral emissions of the giant planets , 2000 .

[82]  J. Hecht,et al.  Thermospheric disturbance recorded by photometers onboard the ARIA II rocket , 2000 .

[83]  T. Bastian,et al.  A Search for Radio Emission from Extrasolar Planets , 1999 .

[84]  Bruce T. Tsurutani,et al.  Interplanetary origin of geomagnetic storms , 1999 .

[85]  M. Rycroft Physics of the Aurora and Airglow , 1997 .

[86]  Robert L. Lysak,et al.  Introduction to Space Physics , 1995 .

[87]  Michael E. Brown,et al.  Introduction to Space Physics , 1995 .

[88]  H. W. Kroehl,et al.  What is a geomagnetic storm , 1994 .

[89]  H. Mizutani,et al.  A new scaling law of the planetary magnetic fields , 1992 .

[90]  A. Cheng,et al.  Triton torus and Neptune aurora , 1990 .

[91]  D. P. Steele,et al.  Electron auroral excitation efficiencies and intensity ratios , 1990 .

[92]  D. B. Jenkins,et al.  ETON 1: A data base pertinent to the study of energy transfer in the oxygen nightglow , 1986 .

[93]  M. Desch,et al.  Predictions for Uranus from a radiometric Bode's law , 1984, Nature.

[94]  D. Stevenson Planetary magnetic fields , 1983 .

[95]  G. Siscoe,et al.  Scaling relations governing magnetospheric energy transfer , 1982 .

[96]  Syun-Ichi Akasofu,et al.  A study of geomagnetic storms , 1978 .

[97]  M. Schield Pressure balance between solar wind and magnetosphere , 1969 .

[98]  D. Hunten,et al.  Optical upper atmospheric investigations at the University of Saskatchewan. , 1967, Applied optics.

[99]  D. Wark Doppler Widths of the Atomic Oxygen Lines in the Airglow. , 1960 .

[100]  E. Parker Dynamics of the Interplanetary Gas and Magnetic Fields , 1958 .

[101]  D. Hunten Some photometric observations of auroral spectra , 1955 .

[102]  Maxim L. Khodachenko,et al.  Characterizing Stellar and Exoplanetary Environments , 2015 .

[103]  Mathieu Barthelemy,et al.  Sensitivity of upper atmospheric emissions calculations to solar/stellar UV flux , 2014 .

[104]  J. Linsky,et al.  The heliospheric hydrogen wall and astrospheres , 2004 .

[105]  Syun-Ichi Akasofu,et al.  Energy coupling between the solar wind and the magnetosphere , 1981 .

[106]  R. Landshoff,et al.  Physics of the Aurora and Airglow , 1961 .