Composite materials in flexible multibody systems

In this work the flexible multibody dynamics formulations of complex models are extended to include elastic components made of laminated composite materials. The only limitation for the deformation of a structural member is that it must be elastic and linear when described in a body fixed frame. A finite element model for each flexible body is obtained such that the nodal coordinates are described with respect to the body fixed frame and the inertia terms involved in the mass matrix and gyroscopic force vector use a diagonalized mass description of the inertia terms. The coupling between the flexible body deformation and its rigid body motion is described using only standard finite element parameters obtained with a commercial finite element code. These elements include composite material shells and beams. For composite material beam elements, the properties of their sections are found using an asymptotic procedure proposed by Hodges. The component mode synthesis is used to reduce the number of generalized coordinates to a reasonable dimension for complex shaped structural models of flexible bodies. The kinematic constraints between the different system components are introduced and the equations of motion of the flexible multibody system are solved using an augmented Lagrangean formulation. Finally, the methodology is applied to the analysis of the deployment of a synthetic aperture radar (SAR) Antenna and the results are discussed.

[1]  T. R. Kane,et al.  Dynamics of a cantilever beam attached to a moving base , 1987 .

[2]  Carlos E. S. Cesnik,et al.  VABS: A New Concept for Composite Rotor Blade Cross-Sectional Modeling , 1995 .

[3]  K. Bathe,et al.  Large displacement analysis of three‐dimensional beam structures , 1979 .

[4]  B. J. Hsieh,et al.  Non-Linear Transient Finite Element Analysis with Convected Co--ordinates , 1973 .

[5]  M. Géradin,et al.  A beam finite element non‐linear theory with finite rotations , 1988 .

[6]  A. Shabana Definition of the Slopes and the Finite Element Absolute Nodal Coordinate Formulation , 1997 .

[7]  Pascal Lardeur Développement et évaluation de deux nouveaux éléments finis de plaques et coques composites avec influence du cisaillement transversal , 1990 .

[8]  J. Reddy Mechanics of laminated composite plates : theory and analysis , 1997 .

[9]  Carlos E. S. Cesnik,et al.  On Timoshenko-like modeling of initially curved and twisted composite beams , 2002 .

[10]  J. P. Meijaard,et al.  Validation of flexible beam elements in dynamics programs , 1996 .

[11]  Harry G. Schaeffer MSC/NASTRAN primer : static and normal modes analysis , 1982 .

[12]  M. Géradin,et al.  Modelling of superelements in mechanism analysis , 1991 .

[13]  Dewey H. Hodges,et al.  Review of composite rotor blade modeling , 1990 .

[14]  Parviz E. Nikravesh,et al.  Computer-aided analysis of mechanical systems , 1988 .

[15]  J. Reddy Mechanics of laminated composite plates and shells : theory and analysis , 1996 .

[16]  M. Hiller,et al.  Numerical simulation of mechanical systems using methods for differential‐algebraic equations , 1991 .

[17]  Olivier A. Bauchau,et al.  Analysis of Nonlinear Multibody Systems with Elastic Couplings , 1999 .

[18]  Wan-Suk Yoo,et al.  Dynamics of Flexible Mechanical Systems Using Vibration and Static Correction Modes , 1986 .

[19]  J. C. Simo,et al.  On the dynamics of finite-strain rods undergoing large motions a geometrically exact approach , 1988 .

[20]  P. Lardeur,et al.  A discrete shear triangular nine D.O.F. element for the analysis of thick to very thin plates , 1989 .

[21]  Jorge Ambrósio,et al.  Complex Flexible Multibody Systems with Application to Vehicle Dynamics , 2001 .

[22]  F. Melzer,et al.  Symbolic computations in flexible multibody systems , 1996 .

[23]  R. Cavin,et al.  Hamilton's principle - Finite-element methods and flexible body dynamics , 1977 .

[24]  M. S. Pereira,et al.  Dynamic analysis of spatial flexible multibody systems using joint co‐ordinates , 1991 .

[25]  J. O. Song,et al.  Dynamic analysis of planar flexible mechanisms , 1980 .

[26]  Dewey H. Hodges,et al.  A review of composite rotor blade modeling , 1988 .

[27]  A. Shabana,et al.  A Coordinate Reduction Technique for Dynamic Analysis of Spatial Substructures with Large Angular Rotations , 1983 .

[28]  J. Spanos,et al.  Selection of component modes for flexible multibody simulation , 1991 .

[29]  Ozden O. Ochoa,et al.  Finite Element Analysis of Composite Laminates , 1992 .

[30]  I. Duff,et al.  Direct Methods for Sparse Matrices , 1987 .

[31]  Dewey H. Hodges,et al.  On asymptotically correct Timoshenko-like anisotropic beam theory , 2000 .

[32]  Oskar Wallrapp,et al.  Representation of geometric stiffening in multibody system simulation , 1991 .

[33]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .

[34]  J. Ambrósio,et al.  Elasto-plastic deformations in multibody dynamics , 1992 .