Direct Reduction of Oxyhemoglobin on a Bare Glassy Carbon Electrode

[1]  S. Dong,et al.  Spectroelectrochemistry of the quasi-reversible reduction and oxidation of hemoglobin at a methylene blue adsorbed modified electrode , 1988 .

[2]  R. S. Nicholson,et al.  Theory of Stationary Electrode Polarography. Single Scan and Cyclic Methods Applied to Reversible, Irreversible, and Kinetic Systems. , 1964 .

[3]  A. Moosavi-Movahedi,et al.  BINDING DATA ANALYSIS OF THE INTERACTION OF BOVINE HEMOGLOBIN WITH DODECYLTRIMETHYLAMMONIUM BROMIDE , 1996 .

[4]  J. Rusling,et al.  Electron transfer from electrodes to myoglobin: facilitated in surfactant films and blocked by adsorbed biomacromolecules. , 1995, Analytical chemistry.

[5]  S. Dong,et al.  Rapid redox reaction of hemoglobin at methylene green modified platinum electrode , 1990 .

[6]  D. Zapien,et al.  Electron transfer of horse spleen ferritin at gold electrodes modified by self-assembled monolayers , 1997 .

[7]  T. Kuwana,et al.  Spectroelectrochemical study of indirect reduction of triphosphopyridine nucleotide , 1971 .

[8]  F. Scheller,et al.  A conformational study of poly-l-lysine, metmyoglobin, cytochrome c, methaemoglobin and glycogen phosphorylase b adsorbed at mercury electrode , 1974 .

[9]  S. Kwee A novel mediator for the investigation of the electrochemistry of metalloproteins , 1986 .

[10]  F. Scheller Functional properties of adsorbed hemoproteins , 1977 .

[11]  N. M. Mestechkina,et al.  The reduction mechanism of cytochrome c and methemoglobin on the mercury electrode , 1977 .

[12]  T. Kunitake,et al.  Functional conversion of myoglobin bound to synthetic bilayer membranes : from dioxygen storage protein to redox enzyme , 1991 .

[13]  Hongyuan Chen,et al.  Direct electron transfer reaction of hemoglobin at the bare silver electrode , 1994 .

[14]  B. Ye,et al.  Direct electrochemistry of hemoglobin at a bare silver electrode promoted by cetyl pyridinium chloride and its application in analysis , 1996 .

[15]  James F. Rusling,et al.  Enhanced electron transfer for myoglobin in surfactant films on electrodes , 1993 .

[16]  James F. Rusling,et al.  Films of hemoglobin and didodecyldimethylammonium bromide with enhanced electron transfer rates , 1997 .

[17]  Hongyuan Chen,et al.  L-Cysteine Modified Silver Electrode and Its Application to the Study of the Electrochemistry of Hemoglobin , 1996 .

[18]  S. Dong,et al.  Study of the electrode process of hemoglobin at a polymerized azure A film electrode , 1993 .

[19]  J. Rusling,et al.  PROTON-COUPLED ELECTRON TRANSFER FROM ELECTRODES TO MYOGLOBIN IN ORDERED BIOMEMBRANE-LIKE FILMS , 1997 .

[20]  L. Gorton,et al.  Electrochemical properties of some copper-containing oxidases , 1996 .

[21]  T. Meyer,et al.  Electrocatalysis of proton-coupled electron-transfer reactions at glassy carbon electrodes , 1985 .

[22]  S. Dong,et al.  RAPID ELECTROCHEMICAL OXIDATION OF HEMOGLOBIN AT A DYE MODIFIED ELECTRODE , 1991 .

[23]  A. Bond,et al.  Interpretation of the electrochemistry of cytochrome c at macro and micro sized carbon electrodes using a microscopic model based on a partially blocke , 1991 .

[24]  F. Armstrong,et al.  Voltammetric study of proton-gated electron transfer in a mutant ferredoxin. Altering aspartate to asparagine blocks oxidation of the [3Fe-4S] cluster of Azotobacter vinelandii ferredoxin I , 1993 .

[25]  R. Baldwin,et al.  Catalytic reduction of myoglobin and hemoglobin at chemically modified electrodes containing methylene blue. , 1988, Analytical chemistry.