Phylogenomics and evolutionary diversification of the subfamily Polygonoideae

Many species of the subfamily Polygonoideae are economically important. However, phylogenetic relationships and taxonomic treatments of these species remain disputed. In this study, we used highly orthologous nuclear genes and plastome sequence variation extracted from transcriptomes from 98 species of 26 genera of Polygonaceae mainly from the subfamily Polygonoideae to construct a robust phylogeny. We discerned six successively diverged and well‐defined clades and both nuclear and plastome phylogenies are highly consistent with each other in this subfamily. Phylogenetic relationships between all clades and subclades were well resolved within Polygonoideae. Our analyses revealed that the shrub tribe Atraphaxideae and the herbal genera Polygonum, Persicaria, and Fallopia are polyphyletic. The sampled species of Polygonoideae started to diversify around the Cretaceous/Tertiary boundary (70 Ma) when the global climate exhibited large oscillations. Further origins of more herbal and woody species were found to have clearly increased during later climatic oscillations. We found that woody habits, especially shrubs, originated multiple times from ancestral herbs in this subfamily. Local dry climates may have favored such habit shifts from ancestral herbs. Our results deepen our understanding of evolutionary diversification of Polygonoideae.

[1]  F. Schweingruber,et al.  Polygonaceae , 2022, Anatomic Atlas of Aquatic and Wetland Plant Stems.

[2]  K. Dehesh,et al.  The MEP-pathway genes are polyphyletic origin and evolutionary conserved , 2020 .

[3]  Jianquan Liu,et al.  Plastome and phylogenetic relationship of the woody buckwheat Fagopyrum tibeticum in the Qinghai-Tibet Plateau , 2020, Plant diversity.

[4]  Jianquan Liu,et al.  Phylotranscriptomics reveals extensive gene duplication in the subtribe Gentianinae (Gentianaceae) , 2020, Journal of Systematics and Evolution.

[5]  Y. Hu,et al.  Phylotranscriptomics in Cucurbitaceae Reveal Multiple Whole Genome Duplications and Key Morphological and Molecular Innovations. , 2020, Molecular plant.

[6]  Taliesin J. Kinser,et al.  Phylotranscriptomic Analyses Reveal Asymmetrical Gene Duplication Dynamics and Signatures of Ancient Polyploidy in Mints , 2019, Genome biology and evolution.

[7]  Yan Yu,et al.  RASP 4: ancestral state reconstruction tool for multiple genes and characters. , 2019, Molecular biology and evolution.

[8]  Daniel B. Sloan,et al.  Gene-wise resampling outperforms site-wise resampling in phylogenetic coalescence analyses. , 2019, Molecular phylogenetics and evolution.

[9]  S. Kelly,et al.  OrthoFinder: phylogenetic orthology inference for comparative genomics , 2019, Genome Biology.

[10]  M. Suchard,et al.  Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7 , 2018, Systematic biology.

[11]  Hong Ma,et al.  Resolution of deep eudicot phylogeny and their temporal diversification using nuclear genes from transcriptomic and genomic datasets. , 2017, The New phytologist.

[12]  Xumei Wang,et al.  The complete chloroplast genome sequence of the medicinal plant Rheum palmatum L. (Polygonaceae) , 2016, Mitochondrial DNA. Part A, DNA mapping, sequencing, and analysis.

[13]  J. L. Reveal,et al.  An updated molecular phylogeny of Polygonoideae (Polygonaceae): Relationships of Oxygonum, Pteroxygonum, and Rumex, and a new circumscription of Koenigia , 2015 .

[14]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[15]  Tandy J. Warnow,et al.  ASTRAL-II: coalescent-based species tree estimation with many hundreds of taxa and thousands of genes , 2015, Bioinform..

[16]  Y. Yu,et al.  RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. , 2015, Molecular phylogenetics and evolution.

[17]  V. Mozaffarian,et al.  Molecular phylogeny of Atraphaxis and the woody Polygonum species (Polygonaceae): taxonomic implications based on molecular and morphological evidence , 2015, Plant Systematics and Evolution.

[18]  N. Matzke,et al.  Model selection in historical biogeography reveals that founder-event speciation is a crucial process in Island Clades. , 2014, Systematic biology.

[19]  Saravanaraj N. Ayyampalayam,et al.  Phylotranscriptomic analysis of the origin and early diversification of land plants , 2014, Proceedings of the National Academy of Sciences.

[20]  Stephen A. Smith,et al.  Orthology Inference in Nonmodel Organisms Using Transcriptomes and Low-Coverage Genomes: Improving Accuracy and Matrix Occupancy for Phylogenomics , 2014, Molecular biology and evolution.

[21]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[22]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[23]  Vincent Ferretti,et al.  Evaluation of Alignment Algorithms for Discovery and Identification of Pathogens Using RNA-Seq , 2013, PloS one.

[24]  Colin N. Dewey,et al.  De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis , 2013, Nature Protocols.

[25]  K. Kron,et al.  Age Estimates for the Buckwheat Family Polygonaceae Based on Sequence Data Calibrated by Fossils and with a Focus on the Amphi-Pacific Muehlenbeckia , 2013, PloS one.

[26]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[27]  Ramón Doallo,et al.  CircadiOmics: integrating circadian genomics, transcriptomics, proteomics and metabolomics , 2012, Nature Methods.

[28]  Yanxia Sun,et al.  Molecular phylogeny of tribe Atraphaxideae (Polygonaceae) evidenced from five cpDNA genes , 2012 .

[29]  Jianquan Liu,et al.  On the origin of the woody buckwheat Fagopyrum tibeticum (=Parapteropyrum tibeticum) in the Qinghai-Tibetan Plateau. , 2011, Molecular phylogenetics and evolution.

[30]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[31]  Janelle M. Burke Systematics Of Antigonon And Tropical Eriogonoideae: Phylogeny, Taxonomy, And Invasion Biology , 2011 .

[32]  K. Kron,et al.  Taxonomy of Polygonoideae (Polygonaceae): A new tribal classification , 2011 .

[33]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[34]  M. Luckow,et al.  Placing the woody tropical genera of Polygonaceae: A hypothesis of character evolution and phylogeny. , 2010, American journal of botany.

[35]  Paramvir S. Dehal,et al.  FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments , 2010, PloS one.

[36]  S. Manchester,et al.  Phylogenetic Distribution and Identification of Fin-winged Fruits , 2010, The Botanical Review.

[37]  K. Kron,et al.  A Large‐Scale Phylogeny of Polygonaceae Based on Molecular Data , 2009, International Journal of Plant Sciences.

[38]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[39]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[40]  K. Kron,et al.  rbcL Phylogeny and Character Evolution in Polygonaceae , 2009 .

[41]  S. Carlquist Wood Anatomy of Aextoxicaceae and Berberidopsidaceae Is Compatible with Their Inclusion in Berberidopsidales , 2009 .

[42]  Jianquan Liu,et al.  Karyological studies of Parapteropyrum and Atraphaxis (Polygonaceae) , 2009 .

[43]  K. Kron,et al.  Phylogenetics of Polygonaceae with an Emphasis on the Evolution of Eriogonoideae , 2008 .

[44]  Gerald R. Dickens,et al.  An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics , 2008, Nature.

[45]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[46]  Adam Godzik,et al.  Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences , 2006, Bioinform..

[47]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[48]  E. Smets,et al.  Systematic significance of tepal surface morphology in tribes Persicarieae and Polygoneae (Polygonaceae) , 1998 .

[49]  W. Martin,et al.  Island colonization and evolution of the insular woody habit in Echium L. (Boraginaceae). , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Suk-Pyo Hong Pollen Morphology of Parapteropyrum and Some Putatively Related Genera (Polygonaceae – Atraphaxideae) , 1995 .

[51]  R. Warner,et al.  Case management, quality of life, and satisfaction with services of long-term psychiatric patients. , 1992, Hospital & community psychiatry.

[52]  J. Akeroyd,et al.  Generic limits in Polygonum and related genera (Polygonaceae) on the basis of floral characters , 1988 .

[53]  A. Maassoumi,et al.  The phylogeny of Calligonum and Pteropyrum (Polygonaceae) based on nuclear ribosomal DNA ITS and chloroplast trnL-F sequences , 2010 .

[54]  E. Banfi,et al.  Molecular phylogeny of Polygonum L. s.l. (Polygonoideae, Polygonaceae), focusing on European taxa: preliminary results and systematic considerations based on rbcL plastidial sequence data , 2009 .

[55]  Hou Yuan Study on flora of the tribe Polygoneae (Polygonaceae) in China , 2007 .

[56]  M. Chase,et al.  Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid rbcL, atpB, and matK DNA sequences. , 2002, American journal of botany.

[57]  M. Chase,et al.  Systematics of Plumbaginaceae based upon cladistic analysis of rbcL sequence data , 1998 .

[58]  James F. Smith Phylogenetics of seed plants : An analysis of nucleotide sequences from the plastid gene rbcL , 1993 .

[59]  Kerstin Haraldson Anatomy and taxonomy in Polygonaceae subfam. Polygonoideae Meisn. emend. Jaretzky , 1978 .