Global fits of new intermolecular ground state potential energy surfaces for N2-H2 and N2-N2 van der Waals dimers

Abstract We have built new global fits for the ground state potential energy surfaces (PES) of N 2 –H 2 and N 2 –N 2 complexes using ab initio perturbative and supermolecular methods. The analytical expressions used in the four-dimensional fitting procedure require the knowledge of the multipole moments, the static and dynamic multipolar polarizabilities of each monomer, from which long-range electrostatic, induction and dispersion coefficients are evaluated. In agreement with previous work, we have found the most stable conformation of N 2 –H 2 to be linear and that of N 2 –N 2 to have a 45/50° canted parallel shape. The quality of present PESs have been checked by comparing between calculated and experimental second virial coefficients and integral scattering cross-sections, which are found to be in good agreement.

[1]  Hideto Kanamori,et al.  Ab initio MO studies of van der Waals molecule (N2)2: Potential energy surface and internal motion , 1998 .

[2]  Robert Moszynski,et al.  Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes , 1994 .

[3]  Ashok Kumar,et al.  Reliable isotropic and anisotropic dipolar dispersion energies, evaluated using constrained dipole oscillator strength techniques, with application to interactions involving H2, N2, and the rare gases , 1990 .

[4]  J. Poll,et al.  Multipole Moments of the Hydrogen Molecule , 1975 .

[5]  F. Thibault,et al.  Q-branch linewidths of N2 perturbed by H2: experiments and quantum calculations from an ab initio potential. , 2007, The Journal of chemical physics.

[6]  R. T. Pack First quantum corrections to second virial coefficients for anisotropic interactions: Simple, corrected formulaa) , 1983 .

[7]  Harry Partridge,et al.  The N2–N2 potential energy surface , 1997 .

[8]  A. van der Avoird,et al.  An improved intermolecular potential for nitrogen , 1986 .

[9]  K. Tang,et al.  An improved simple model for the van der Waals potential based on universal damping functions for the dispersion coefficients , 1984 .

[10]  K. Leonhard,et al.  Monte Carlo simulations of nitrogen using an ab initio potential , 2002 .

[11]  Alan K. Burnham,et al.  Measurement of the dispersion in polarizability anisotropies , 1975 .

[12]  P. Wormer,et al.  Time‐dependent coupled Hartree–Fock calculations of multipole polarizabilities and dispersion interactions in van der Waals dimers consisting of He, H2, Ne, and N2 , 1983 .

[13]  J. L. Paz,et al.  AB INITIO TEST STUDY OF THE N2...H2 AND N2...HE VAN DER WAALS DIMERS , 1999 .

[14]  P. Jankowski,et al.  On the optimal choice of monomer geometry in calculations of intermolecular interaction energies: Rovibrational spectrum of Ar–HF from two- and three-dimensional potentials , 2000 .

[15]  D. J. Dawson,et al.  Dipole oscillator strength distributions, sums, and some related properties for Li, N, O, H2, N2, O2, NH3, H2O, NO, and N2O , 1977 .

[16]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[17]  F. Tao AN ACCURATE AB INITIO POTENTIAL ENERGY SURFACE OF THE HE-H2 INTERACTION , 1994 .

[18]  Per Jensen,et al.  Computational molecular spectroscopy , 2000, Nature Reviews Methods Primers.

[19]  J. Trusler,et al.  Second acoustic virial coefficients of nitrogen between 80 and 373 K , 1992 .

[20]  Olivier Couronne,et al.  An ab initio and DFT study of (N2)2 dimers , 1999 .

[21]  F. Pirani,et al.  A fast and accurate semiclassical calculation of the total elastic cross section in the glory energy range , 1982 .

[22]  S. Walch Theoretical characterization of selected regions of the ground state potential surface of N2H2 , 1989 .

[23]  J. Dymond,et al.  The Virial Coefficients of Pure Gases and Mixtures: A Critical Compilation , 1979 .

[24]  K. MacAdam,et al.  Molecular-Beam Magnetic-Resonance Measurements of the Anisotropies of the Electric Polarizabilities of H 2 and D 2 , 1972 .

[25]  A. Hernández,et al.  Estimation of the quadrupole and hexadecapole moments of N2 from the far-infrared spectrum of a N2–Xe gaseous mixture , 1999 .

[26]  P. Wormer,et al.  Correlated van der Waals coefficients for dimers consisting of He, Ne, H2, and N2 , 1988 .

[27]  Boris M. Smirnov,et al.  Reference Data on Atoms, Molecules, and Ions , 1985 .

[28]  Shant Shahbazian,et al.  An improved ab initio potential energy surface for N2–N2 , 2005 .

[29]  P. Wormer,et al.  A van der Waals intermolecular potential for (O2)2 , 1993 .

[30]  Fernando Pirani,et al.  An intermolecular potential for nitrogen from a multi-property analysis , 1998 .

[31]  Betsy M. Rice,et al.  Intermolecular potential of carbon dioxide dimer from symmetry-adapted perturbation theory , 1999 .

[32]  F. Tao,et al.  Ab initio potential energy curves and binding energies of Ar2 and Mg2 , 1994 .