3D-HST: A WIDE-FIELD GRISM SPECTROSCOPIC SURVEY WITH THE HUBBLE SPACE TELESCOPE

We present 3D-HST, a near-infrared spectroscopic Treasury program with the Hubble Space Telescope for studying the physical processes that shape galaxies in the distant universe. 3D-HST provides rest-frame optical spectra for a sample of ∼7000 galaxies at 1 < z < 3.5, the epoch when ∼60% of all star formation took place, the number density of quasars peaked, the first galaxies stopped forming stars, and the structural regularity that we see in galaxies today must have emerged. 3D-HST will cover three quarters (625 arcmin^2) of the CANDELS Treasury survey area with two orbits of primary WFC3/G141 grism coverage and two to four orbits with the ACS/G800L grism in parallel. In the IR, these exposure times yield a continuum signal-to-noise ratio of ∼5 per resolution element at H_140 ∼ 23.1 and a 5σ emission-line sensitivity of ∼5 × 10^(−17) erg s^−1 cm^(−2) for typical objects, improving by a factor of ∼2 for compact sources in images with low sky background levels. The WFC3/G141 spectra provide continuous wavelength coverage from 1.1 to 1.6μm at a spatial resolution of ∼0."13, which, combined with their depth, makes them a unique resource for studying galaxy evolution. We present an overview of the preliminary reduction and analysis of the grism observations, including emission-line and redshift measurements from combined fits to the extracted grism spectra and photometry from ancillary multi-wavelength catalogs. The present analysis yields redshift estimates with a precision of σ(z) = 0.0034(1 + z), or σ(v) ≈ 1000 km s^(−1). We illustrate how the generalized nature of the survey yields near-infrared spectra of remarkable quality for many different types of objects, including a quasar at z = 4.7, quiescent galaxies at z ∼ 2, and the most distant T-type brown dwarf star known. The combination of the CANDELS and 3D-HST surveys will provide the definitive imaging and spectroscopic data set for studies of the 1 < z < 3.5 universe until the launch of the James Webb Space Telescope.

[1]  Feedback in simulations of disc-galaxy major mergers , 2005, astro-ph/0503201.

[2]  S. Bamford,et al.  Galaxy And Mass Assembly: Stellar Mass Estimates , 2011, 1108.0635.

[3]  Andrew M. Hopkins,et al.  On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.

[4]  C. Steidel,et al.  The Stellar, Gas, and Dynamical Masses of Star-forming Galaxies at z ~ 2 , 2006, astro-ph/0604041.

[5]  S. Ravindranath,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.

[6]  James E. Larkin,et al.  THE KILOPARSEC-SCALE KINEMATICS OF HIGH-REDSHIFT STAR-FORMING GALAXIES , 2009, 0901.2930.

[7]  Emission-Line Galaxies from the NICMOS/Hubble Space Telescope Grism Parallel Survey , 1999, astro-ph/9902347.

[8]  A. Cimatti,et al.  Star formation rates and masses of z∼ 2 galaxies from multicolour photometry , 2010, 1004.4546.

[9]  Toru Yamada,et al.  MOIRCS Deep Survey. IX. Deep Near-Infrared Imaging Data and Source Catalog , 2010, 1012.2115.

[10]  L. Cowie,et al.  A Highly Complete Spectroscopic Survey of the GOODS-N Field , 2008, 0812.2481.

[11]  P. McCarthy,et al.  GLOBAL STAR FORMATION RATE DENSITY OVER 0.7 < z < 1.9 , 2009, 0902.0736.

[12]  E. Gawiser,et al.  Accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 A NEAR-INFRARED SPECTROSCOPIC SURVEY OF K-SELECTED GALAXIES AT z ∼ 2.3: REDSHIFTS AND IMPLICATIONS FOR BROADBAND PHOTOMETRIC STUDIES 1,2 , 2022 .

[13]  H. Bushouse,et al.  HST/WFC3 in-orbit grism performance , 2010, Astronomical Telescopes + Instrumentation.

[14]  A. Cimatti,et al.  A catalogue of the Chandra Deep Field South with multi-colour classification and photometric redshifts from COMBO-17 , 2004, astro-ph/0403666.

[15]  A. Cimatti,et al.  Dynamical properties of AMAZE and LSD galaxies from gas kinematics and the Tully-Fisher relation at z~3 , 2010, 1007.4180.

[16]  P. P. van der Werf,et al.  A Significant Population of Red, Near-Infrared-selected High-Redshift Galaxies , 2003, astro-ph/0303163.

[17]  Anna Pasquali,et al.  The Slitless Spectroscopy Data Extraction Software aXe , 2008, 0812.1434.

[18]  S. Maddox,et al.  zCOSMOS: A Large VLT/VIMOS Redshift Survey Covering 0 < z < 3 in the COSMOS Field , 2006, astro-ph/0612291.

[19]  Stefano Casertano,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3754.

[20]  Bernard Muschielok,et al.  The 4MOST instrument concept overview , 2014, Astronomical Telescopes and Instrumentation.

[21]  Paolo Coppi,et al.  EAZY: A Fast, Public Photometric Redshift Code , 2008, 0807.1533.

[22]  Jay Anderson,et al.  An Empirical Pixel-Based Correction for Imperfect CTE. I. HST’s Advanced Camera for Surveys , 2010, 1007.3987.

[23]  H. Rix,et al.  FIRST RESULTS FROM THE 3D-HST SURVEY: THE STRIKING DIVERSITY OF MASSIVE GALAXIES AT z > 1 , 2011, 1108.6060.

[24]  Stijn Wuyts,et al.  THE PAIR FRACTION OF MASSIVE GALAXIES AT 0 ⩽ z ⩽ 3 , 2011, 1109.2895.

[25]  B. Lundgren,et al.  GALAXY CLUSTERING IN THE NEWFIRM MEDIUM BAND SURVEY: THE RELATIONSHIP BETWEEN STELLAR MASS AND DARK MATTER HALO MASS AT 1 < z < 2 , 2010, 1012.1317.

[26]  H. Rix,et al.  Spectroscopic Identification of Massive Galaxies at z ~ 2.3 with Strongly Suppressed Star Formation , 2006, astro-ph/0608446.

[27]  Kyoung-Soo Lee,et al.  THE NUMBER DENSITY AND MASS DENSITY OF STAR-FORMING AND QUIESCENT GALAXIES AT 0.4 ⩽ z ⩽ 2.2 , 2011, 1104.2595.

[28]  D. Wake,et al.  THE GROWTH OF MASSIVE GALAXIES SINCE z = 2 , 2009, 0912.0514.

[29]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[30]  N. Gehrels Confidence limits for small numbers of events in astrophysical data , 1986 .

[31]  S. Wuyts,et al.  FIREWORKS U38-to-24 μm Photometry of the GOODS Chandra Deep Field-South: Multiwavelength Catalog and Total Infrared Properties of Distant Ks-selected Galaxies , 2008 .

[32]  A. Dressler Galaxy morphology in rich clusters: Implications for the formation and evolution of galaxies , 1980 .

[33]  Redshifts of Emission-Line Objects in the Hubble Ultra Deep Field , 2007, astro-ph/0701875.

[34]  Garth D. Illingworth,et al.  Confirmation of the Remarkable Compactness of Massive Quiescent Galaxies at z ~ 2.3: Early-Type Galaxies Did not Form in a Simple Monolithic Collapse , 2008, 0802.4094.

[35]  K. Horne,et al.  AN OPTIMAL EXTRACTION ALGORITHM FOR CCD SPECTROSCOPY. , 1986 .

[36]  G. Brammer,et al.  THE DEAD SEQUENCE: A CLEAR BIMODALITY IN GALAXY COLORS FROM z = 0 to z = 2.5 , 2009, 0910.2227.

[37]  M. Dopita,et al.  HUBBLE SPACE TELESCOPE WFC3 EARLY RELEASE SCIENCE: EMISSION-LINE GALAXIES FROM INFRARED GRISM OBSERVATIONS , 2010, 1005.3071.

[38]  J. Walsh,et al.  EMISSION-LINE GALAXIES FROM THE HUBBLE SPACE TELESCOPE PROBING EVOLUTION AND REIONIZATION SPECTROSCOPICALLY (PEARS) GRISM SURVEY. I. THE SOUTH FIELDS , 2009, 0907.2254.

[39]  D. Thompson,et al.  COSMOS PHOTOMETRIC REDSHIFTS WITH 30-BANDS FOR 2-deg2 , 2008, 0809.2101.

[40]  J. Walsh,et al.  The Hubble Legacy Archive ACS grism data , 2011, 1103.4703.

[41]  N. Pirzkal,et al.  GRAPES, Grism Spectroscopy of the Hubble Ultra Deep Field: Description and Data Reduction , 2004, astro-ph/0403458.

[42]  M. Giavalisco,et al.  Lyman Break Galaxies at Redshift z ~ 3: Survey Description and Full Data Set , 2003, astro-ph/0305378.

[43]  G. Brammer,et al.  HUBBLE SPACE TELESCOPE WFC3 GRISM SPECTROSCOPY AND IMAGING OF A GROWING COMPACT GALAXY AT z = 1.9 , 2010, 1003.3446.

[44]  M. Kitzbichler,et al.  A calibration of the relation between the abundance of close galaxy pairs and the rate of galaxy mergers , 2008, 0804.1965.

[45]  S. White,et al.  Galaxy growth in the concordance ΛCDM cosmology , 2007, 0708.1814.

[46]  A. Koekemoer,et al.  GALAXY STRUCTURE AND MODE OF STAR FORMATION IN THE SFR–MASS PLANE FROM z ∼ 2.5 TO z ∼ 0.1 , 2011, 1107.0317.

[47]  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[48]  Norbert Pirzkal,et al.  The WFC3 IR 'Blobs , 2010 .

[49]  I. Smail,et al.  The All-Wavelength Extended Groth Strip International Survey (AEGIS) Data Sets , 2006, astro-ph/0607355.

[50]  G. Kauffmann,et al.  The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colour , 2005, astro-ph/0508046.

[51]  Shy Genel,et al.  THE SINS SURVEY: SINFONI INTEGRAL FIELD SPECTROSCOPY OF z ∼ 2 STAR-FORMING GALAXIES , 2009, 0903.1872.

[52]  A. Cimatti,et al.  Passively Evolving Early-Type Galaxies at 1.4 ≲ z ≲ 2.5 in the Hubble Ultra Deep Field , 2005, astro-ph/0503102.

[53]  M. Franx,et al.  The space density and colors of massive galaxies at 2 < z < 3: the predominance of distant red galaxies , 2006 .

[54]  Marijn Franx,et al.  THE DIMINISHING IMPORTANCE OF MAJOR GALAXY MERGERS AT HIGHER REDSHIFTS , 2011, 1106.6054.

[55]  J. Walsh,et al.  SPECTROSCOPIC CONFIRMATION OF FAINT LYMAN BREAK GALAXIES NEAR REDSHIFT FIVE IN THE HUBBLE ULTRA DEEP FIELD , 2008, 0805.1056.

[56]  H.-W. Chen,et al.  ApJ in press Preprint typeset using L ATEX style emulateapj v. 9/08/03 THE GEMINI DEEP DEEP SURVEY. VII. THE REDSHIFT EVOLUTION OF THE MASS-METALLICITY RELATION 1,2 , 2005 .

[57]  R. Bouwens,et al.  UV Luminosity Functions at z~4, 5, and 6 from the Hubble Ultra Deep Field and Other Deep Hubble Space Telescope ACS Fields: Evolution and Star Formation History , 2007, 0707.2080.

[58]  Marc Davis,et al.  Science Objectives and Early Results of the DEEP2 Redshift Survey , 2002, SPIE Astronomical Telescopes + Instrumentation.

[59]  R. J. Ivison,et al.  HiZELS: a high-redshift survey of Hα emitters – I. The cosmic star formation rate and clustering at z= 2.23 , 2008, 0805.2861.

[60]  D. Thompson,et al.  GALAXY STELLAR MASS ASSEMBLY BETWEEN 0.2 < z < 2 FROM THE S-COSMOS SURVEY , 2009, 0903.0102.

[61]  Takamitsu Miyaji,et al.  THE CHANDRA COSMOS SURVEY. I. OVERVIEW AND POINT SOURCE CATALOG , 2009, 0903.2062.

[62]  J. Trump,et al.  EXTREME EMISSION-LINE GALAXIES IN CANDELS: BROADBAND-SELECTED, STARBURSTING DWARF GALAXIES AT z > 1 , 2011, 1107.5256.

[63]  M. Giavalisco,et al.  The Great Observatories Origins Deep Survey: Initial results from optical and near-infrared imaging , 2003, astro-ph/0309105.

[64]  L. Moustakas,et al.  The Structure and Star Formation History of Early-Type Galaxies in the Ultra Deep Field/GRAPES Survey , 2005, astro-ph/0504264.

[65]  Cambridge,et al.  ∼ 4 and the Evolution of the Uv Luminosity Density at High Redshift , 2022 .

[66]  Alison L. Coil,et al.  THE DEEP3 GALAXY REDSHIFT SURVEY: KECK/DEIMOS SPECTROSCOPY IN THE GOODS-N FIELD , 2011, 1101.4018.

[67]  B. Garilli,et al.  THE XMM-NEWTON WIDE-FIELD SURVEY IN THE COSMOS FIELD (XMM-COSMOS): DEMOGRAPHY AND MULTIWAVELENGTH PROPERTIES OF OBSCURED AND UNOBSCURED LUMINOUS ACTIVE GALACTIC NUCLEI , 2010, 1004.2790.

[68]  Volker Springel,et al.  The Many lives of AGN: Cooling flows, black holes and the luminosities and colours of galaxies , 2006, astro-ph/0602065.

[69]  M. Franx,et al.  ULTRAVIOLET LUMINOSITY FUNCTIONS FROM 132 z ∼ 7 AND z ∼ 8 LYMAN-BREAK GALAXIES IN THE ULTRA-DEEP HUDF09 AND WIDE-AREA EARLY RELEASE SCIENCE WFC3/IR OBSERVATIONS , 2010, 1006.4360.

[70]  Daniel Ceverino,et al.  FORMATION OF MASSIVE GALAXIES AT HIGH REDSHIFT: COLD STREAMS, CLUMPY DISKS, AND COMPACT SPHEROIDS , 2009, 0901.2458.

[71]  I. Reid,et al.  SpeX SPECTROSCOPY OF UNRESOLVED VERY LOW MASS BINARIES. I. IDENTIFICATION OF 17 CANDIDATE BINARIES STRADDLING THE L DWARF/T DWARF TRANSITION , 2009, 0912.3808.

[72]  The Bimodal Galaxy Color Distribution: Dependence on Luminosity and Environment , 2004, astro-ph/0406266.

[73]  A. S. Fruchter,et al.  Drizzle: A Method for the Linear Reconstruction of Undersampled Images , 1998 .

[74]  Kyle R. Stewart,et al.  THE MAJOR AND MINOR GALAXY MERGER RATES AT z < 1.5 , 2011, 1108.2508.

[75]  J. Trump,et al.  A CANDELS WFC3 GRISM STUDY OF EMISSION-LINE GALAXIES AT z ∼ 2: A MIX OF NUCLEAR ACTIVITY AND LOW-METALLICITY STAR FORMATION , 2011, 1108.6075.

[76]  S. Wuyts,et al.  THE EVOLUTION OF THE STELLAR MASS FUNCTION OF GALAXIES FROM z = 4.0 AND THE FIRST COMPREHENSIVE ANALYSIS OF ITS UNCERTAINTIES: EVIDENCE FOR MASS-DEPENDENT EVOLUTION , 2008, 0811.1773.

[77]  M. Giavalisco,et al.  The COSMOS Survey: Hubble Space Telescope Advanced Camera for Surveys Observations and Data Processing , 2007 .

[78]  Massimo Stiavelli,et al.  WFPC2 Observations of the Hubble Deep Field South , 2000, astro-ph/0010245.

[79]  M. Nonino,et al.  The Great Observatories Origins Deep Survey VLT/VIMOS Spectroscopy in the GOODS-South Field , 2005, 0802.2930.

[80]  M. Franx,et al.  SUBMITTED TO THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 DETECTION OF QUIESCENT GALAXIES IN A BICOLOR SEQUENCE FROM Z = 0 − 2 , 2022 .

[81]  B. Garilli,et al.  MASS AND ENVIRONMENT AS DRIVERS OF GALAXY EVOLUTION IN SDSS AND zCOSMOS AND THE ORIGIN OF THE SCHECHTER FUNCTION , 2010, 1003.4747.

[82]  D. A. Golimowski,et al.  Preliminary Parallaxes of 40 L and T Dwarfs from the US Naval Observatory Infrared Astrometry Program , 2004 .

[83]  H. Rix,et al.  SPATIALLY RESOLVED Hα MAPS AND SIZES OF 57 STRONGLY STAR-FORMING GALAXIES AT z ∼ 1 FROM 3D-HST: EVIDENCE FOR RAPID INSIDE-OUT ASSEMBLY OF DISK GALAXIES , 2012, 1202.1822.

[84]  Reinhard Genzel,et al.  THE zCOSMOS–SINFONI PROJECT. I. SAMPLE SELECTION AND NATURAL-SEEING OBSERVATIONS , 2011, 1109.5952.

[85]  B. Lundgren,et al.  THE NEWFIRM MEDIUM-BAND SURVEY: PHOTOMETRIC CATALOGS, REDSHIFTS, AND THE BIMODAL COLOR DISTRIBUTION OF GALAXIES OUT TO z ∼ 3 , 2011, 1105.4609.

[86]  India,et al.  Resolved Galaxies in the Hubble Ultra Deep Field: Star Formation in Disks at High Redshift , 2007 .

[87]  R. Nichol,et al.  The dependence of star formation history and internal structure on stellar mass for 105 low‐redshift galaxies , 2002, astro-ph/0205070.

[88]  Stefano Casertano,et al.  Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution , 2004, astro-ph/0402512.

[89]  Spitzer IRAC Confirmation of z850-Dropout Galaxies in the Hubble Ultra Deep Field: Stellar Masses and Ages at z 7 , 2006, astro-ph/0608444.

[90]  A. Henry,et al.  THE WFC3 INFRARED SPECTROSCOPIC PARALLEL (WISP) SURVEY , 2010, 1005.4068.