Deuterium Quadrupolar Parameters from 1H and 2H NMR Spectra for Pyridine-d5, Benzonitrile-d5 and Chlorobenzene-d5 Using Liquid Crystal Solvents

T he quadrupolar coupling constants (DQCC) and the asymmetry parameters (η) for the ortho, meta and para deuterons in pyridine-d5, benzonitrile-d5 and chlorobenzene-d5 were determined by NMR spectroscopy in oriented phases. The 1H and 2H NMR spectra were recorded in the following solutions in liquid crystal solvents: pyridine + pyridine-d5 in PCH , in ZLI 1167 and in EBBA; benzonitrile + benzonitrile-d5 and chlorobenzene + chlorobenzene-d5 in the same solvents. The order parameters of the non-deuterated solutes in the various solutions were calculated using the dipolar couplings of the proton spectra and the rα structures taken from the literature. The same order parameters were assumed to describe also the orientation of the deuterated solute in the corresponding solutions. Each 2H spectrum yielded three quadrupolar splittings for the three different deuterated positions in the labelled solute. The splittings from the three different solutions of the same solute, together with the order parameters and the rα structure, were used to determine DQCC and η of the ortho, meta and para deuterons (Pyridine-d5: DQCCortho= 183(1) kHz, ηortho = 0.030(5), DQCCmeta = 185(1) kHz, ηmeta = 0.030(10), DQCCpara = 188(6) kHz, ηpara = 0.01(5). Benzonitrile-d5: DQCCortho = 171(12) kHz, ηortho = 0.07(3), DQCCmeta = 175(12) kHz, ηmeta = 0.05(3), DQCCpara = 176(4) kHz, ηpara = 0.10(7). Chlorobenzene-d5: DQCCortho = 180(2) kHz, ηortho = 0.06(1), DQCCmeta = 174(2) kHz, ηmeta = 0.09(3), DQCCpara= 182(4) kHz, ηPara = 0.06(4)). The results are discussed, as well as the limits and possibilities of the method used.