Application of the Kalai-Smorodinsky approach in multi-objective optimization of metal forming processes
暂无分享,去创建一个
Lionel Fourment | Matteo Strano | Lorenzo Iorio | Stéphane Marie | L. Iorio | L. Fourment | M. Strano | S. Marie
[1] Patrice Lasne,et al. Inverse Analysis of Forming Processes Based on FORGE Environment , 2014 .
[2] Betzalel Avitzur,et al. Analysis of Wire Drawing and Extrusion Through Conical Dies of Large Cone Angle , 1963 .
[3] C. Poloni,et al. Hybridization of a multi-objective genetic algorithm, a neural network and a classical optimizer for a complex design problem in fluid dynamics , 2000 .
[4] Nasirzadeh Farnad,et al. QUANTITATIVE RISK ALLOCATION IN CONSTRUCTION PROJECTS: A FUZZY-BARGAINING GAME APPROACH , 2014 .
[5] P. Siarry,et al. Multiobjective Optimization: Principles and Case Studies , 2004 .
[6] T.C.A. Anant,et al. Bargaining without convexity: Generalizing the Kalai-Smorodinsky solution , 1990 .
[7] E. Kalai,et al. OTHER SOLUTIONS TO NASH'S BARGAINING PROBLEM , 1975 .
[8] Aalae Benki,et al. Méthodes efficaces de capture de front de pareto en conception mécanique multicritère : applications industrielles , 2014 .
[9] P. Montmitonnet,et al. The optimal die semi-angle concept in wire drawing, examined using automatic optimization techniques , 2013 .
[10] S. Raquel,et al. Application of game theory for a groundwater conflict in Mexico. , 2007, Journal of environmental management.
[11] Christian Fonteix,et al. Multicriteria optimization using a genetic algorithm for determining a Pareto set , 1996, Int. J. Syst. Sci..
[12] I. Kim,et al. Adaptive weighted sum method for multiobjective optimization: a new method for Pareto front generation , 2006 .
[13] Abderrahmane Habbal,et al. Multicriteria shape design of an aerosol can , 2015, J. Comput. Des. Eng..
[14] Lionel Fourment,et al. Multi-Objective Optimization of Metal Forming Processes Based on the Kalai and Smorodinsky Solution , 2015 .
[15] Kalyanmoy Deb,et al. Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.
[16] R. Kohli,et al. A cooperative game theory model of quantity discounts , 1989 .
[17] Xavier Blasco Ferragud,et al. A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization , 2008, Inf. Sci..
[18] H. Moulin. Implementing the Kalai-Smorodinsky bargaining solution , 1984 .
[19] A. Lee Swindlehurst,et al. Bargaining and the MISO Interference Channel , 2009, EURASIP J. Adv. Signal Process..
[20] Michael T. M. Emmerich,et al. Single- and multiobjective evolutionary optimization assisted by Gaussian random field metamodels , 2006, IEEE Transactions on Evolutionary Computation.
[21] Lily Rachmawati,et al. Multiobjective Evolutionary Algorithm With Controllable Focus on the Knees of the Pareto Front , 2009, IEEE Transactions on Evolutionary Computation.
[22] Mohsen Ejday. Optimisation multi-objectifs à base de métamodèle pour les procédés de mise en forme , 2011 .
[23] Game-Theoretic Analysis of Cooperation Among Supply Chain Agents: Review and Extensions , 2006 .
[24] C. Bobadilla,et al. Modelling of drawing and rolling of high carbon flat wires , 2007 .
[25] Y. Chastel,et al. Mechanical and damage analysis along a flat-rolled wire cold forming schedule , 2012 .