Determining the impactor of the Ordovician Lockne crater: Oxygen and neon isotopes in chromite versus sedimentary PGE signatures
暂无分享,去创建一个
B. Schmitz | B. Peucker‐Ehrenbrink | M. Meier | J. Valley | P. Heck | C. Alwmark | T. Ushikubo | N. Kita
[1] B. Peucker‐Ehrenbrink,et al. Rhenium-osmium isotope systematics and platinum group element concentrations in oceanic crust , 2012 .
[2] B. Schmitz,et al. Extraterrestrial chromite distribution across the mid-Ordovician Puxi River section, central China: Evidence for a global major spike in flux of L-chondritic matter , 2010 .
[3] B. Schmitz,et al. Noble gases in individual L chondritic micrometeorites preserved in an Ordovician limestone , 2010 .
[4] B. Schmitz,et al. A single asteroidal source for extraterrestrial Ordovician chromite grains from Sweden and China: High-precision oxygen three-isotope SIMS analysis , 2010 .
[5] J. Valley,et al. High precision SIMS oxygen isotope analysis and the effect of sample topography , 2009 .
[6] K. Farley. Late Eocene and late Miocene cosmic dust events: Comet showers, asteroid collisions, or lunar impacts? , 2009 .
[7] B. Schmitz,et al. Relict silicate inclusions in extraterrestrial chromite and their use in the classification of fossil chondritic material , 2009 .
[8] B. Schmitz,et al. The origin of the Brunflo fossil meteorite and extraterrestrial chromite in mid‐Ordovician limestone from the Gärde quarry (Jämtland, central Sweden) , 2009 .
[9] B. Schmitz,et al. Noble gases in fossil micrometeorites and meteorites from 470 Myr old sediments from southern Sweden, and new evidence for the L‐chondrite parent body breakup event , 2008 .
[10] B. Schmitz,et al. Extraterrestrial chromite in latest Maastrichtian and Paleocene pelagic limestone at Gubbio, Italy: The flux of unmelted ordinary chondrites , 2007 .
[11] J. Bridges,et al. Disruption of the L chondrite parent body: New oxygen isotope evidence from Ordovician relict chromite grains , 2007 .
[12] J. Bridges,et al. Petrographic classification of Middle Ordovician fossil meteorites from Sweden , 2007 .
[13] K. Righter,et al. The Meteoritical Bulletin, No. 92, 2007 September , 2007 .
[14] B. Schmitz,et al. Extraterrestrial chromite in the resurge deposits of the early Late Ordovician Lockne crater, central Sweden , 2007 .
[15] M. Trieloff,et al. L‐chondrite asteroid breakup tied to Ordovician meteorite shower by multiple isochron 40Ar‐39 Ar dating , 2007 .
[16] A. Boyce,et al. Discovery of a 25-cm asteroid clast in the giant Morokweng impact crater, South Africa , 2006, Nature.
[17] B. Schmitz,et al. Extraterrestrial chromite in Middle Ordovician marine limestone at Kinnekulle, southern Sweden—Traces of a major asteroid breakup event , 2006 .
[18] P. Claeys,et al. An ordinary chondrite impactor for the Popigai crater, Siberia , 2005 .
[19] B. Schmitz,et al. Fast delivery of meteorites to Earth after a major asteroid collision , 2004, Nature.
[20] B. Peucker‐Ehrenbrink,et al. Rhenium‐osmium isotope systematics and platinum group element concentrations in oceanic crust from DSDP/ODP Sites 504 and 417/418 , 2003 .
[21] B. Schmitz,et al. A rain of ordinary chondritic meteorites in the early Ordovician , 2001 .
[22] B. Peucker‐Ehrenbrink,et al. Rapid determination of Os isotopic composition by sparging OsO4 into a magnetic-sector ICP-MS , 2000 .
[23] B. Lavielle,et al. Isotopic signatures and origin of nitrogen in IIE and IVA iron meteorites , 2000 .
[24] U. Krähenbühl,et al. The Ordovician chondrite from Brunflo, central Sweden: III. Geochemistry of terrestrial alteration , 2000 .
[25] J. Ormö,et al. When a cosmic impact strikes the sea bed , 2000, Geological Magazine.
[26] E. Sturkell. Impact-related Ir anomaly in the Middle Ordovician Lockne impact structure, Jämtland, Sweden , 1998 .
[27] Brett James Gladman,et al. Asteroid Showers on Earth after Family Breakup Events , 1998 .
[28] B. Schmitz,et al. Accretion rates of meteorites and cosmic dust in the Early Ordovician. , 1997, Science.
[29] B. Schmitz,et al. Geochemistry of meteorite-rich marine limestone strata and fossil meteorites from the lower Ordovician at Kinnekulle, Sweden , 1996 .
[30] R. Clayton,et al. Oxygen isotope studies of achondrites , 1996 .
[31] W. Goodfellow,et al. Use of platinum-group elements for impactor identification: Terrestrial impact craters and Cretaceous-Tertiary boundary , 1993 .
[32] E. Boyle,et al. Post-depositional mobility of platinum, iridium and rhenium in marine sediments , 1992, Nature.
[33] F. E. Wickman,et al. The Ordovician chondrite from Brunflo, central Sweden, II. Secondary minerals , 1991 .
[34] R. Clayton,et al. Oxygen isotope studies of ordinary chondrites , 1991 .
[35] V. Gostin,et al. ACRAMAN IMPACT EJECTA AND HOST SHALES - EVIDENCE FOR LOW-TEMPERATURE MOBILIZATION OF IRIDIUM AND OTHER PLATINOIDS , 1990 .
[36] J. Wasson,et al. Compositions of chondrites , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[37] R. Clayton,et al. Oxygen isotope relationships in iron meteorites , 1983 .
[38] E. Anders. Origin, age, and composition of meteorites , 1964 .
[39] J. Erzinger,et al. The Lockne Impact is not Related to the Ordivician L-Chondrite Shower , 2008 .
[40] Wang Xiaofeng,et al. Asteroid breakup linked to the Great Ordovician Biodiversification Event , 2008 .
[41] Martin J. Siegert,et al. EOS Trans. AGU , 2003 .
[42] F. Kyte. Unmelted meteoritic debris collected from Eltanin ejecta in Polarstern cores from expedition ANT XII/4 , 2002 .
[43] S. Dermott,et al. Asteroidal Dust , 2002 .
[44] K. Keil,et al. Mineralogy and petrology of silicate inclusions in iron meteorites , 1970 .