Determining the impactor of the Ordovician Lockne crater: Oxygen and neon isotopes in chromite versus sedimentary PGE signatures

[1]  B. Peucker‐Ehrenbrink,et al.  Rhenium-osmium isotope systematics and platinum group element concentrations in oceanic crust , 2012 .

[2]  B. Schmitz,et al.  Extraterrestrial chromite distribution across the mid-Ordovician Puxi River section, central China: Evidence for a global major spike in flux of L-chondritic matter , 2010 .

[3]  B. Schmitz,et al.  Noble gases in individual L chondritic micrometeorites preserved in an Ordovician limestone , 2010 .

[4]  B. Schmitz,et al.  A single asteroidal source for extraterrestrial Ordovician chromite grains from Sweden and China: High-precision oxygen three-isotope SIMS analysis , 2010 .

[5]  J. Valley,et al.  High precision SIMS oxygen isotope analysis and the effect of sample topography , 2009 .

[6]  K. Farley Late Eocene and late Miocene cosmic dust events: Comet showers, asteroid collisions, or lunar impacts? , 2009 .

[7]  B. Schmitz,et al.  Relict silicate inclusions in extraterrestrial chromite and their use in the classification of fossil chondritic material , 2009 .

[8]  B. Schmitz,et al.  The origin of the Brunflo fossil meteorite and extraterrestrial chromite in mid‐Ordovician limestone from the Gärde quarry (Jämtland, central Sweden) , 2009 .

[9]  B. Schmitz,et al.  Noble gases in fossil micrometeorites and meteorites from 470 Myr old sediments from southern Sweden, and new evidence for the L‐chondrite parent body breakup event , 2008 .

[10]  B. Schmitz,et al.  Extraterrestrial chromite in latest Maastrichtian and Paleocene pelagic limestone at Gubbio, Italy: The flux of unmelted ordinary chondrites , 2007 .

[11]  J. Bridges,et al.  Disruption of the L chondrite parent body: New oxygen isotope evidence from Ordovician relict chromite grains , 2007 .

[12]  J. Bridges,et al.  Petrographic classification of Middle Ordovician fossil meteorites from Sweden , 2007 .

[13]  K. Righter,et al.  The Meteoritical Bulletin, No. 92, 2007 September , 2007 .

[14]  B. Schmitz,et al.  Extraterrestrial chromite in the resurge deposits of the early Late Ordovician Lockne crater, central Sweden , 2007 .

[15]  M. Trieloff,et al.  L‐chondrite asteroid breakup tied to Ordovician meteorite shower by multiple isochron 40Ar‐39 Ar dating , 2007 .

[16]  A. Boyce,et al.  Discovery of a 25-cm asteroid clast in the giant Morokweng impact crater, South Africa , 2006, Nature.

[17]  B. Schmitz,et al.  Extraterrestrial chromite in Middle Ordovician marine limestone at Kinnekulle, southern Sweden—Traces of a major asteroid breakup event , 2006 .

[18]  P. Claeys,et al.  An ordinary chondrite impactor for the Popigai crater, Siberia , 2005 .

[19]  B. Schmitz,et al.  Fast delivery of meteorites to Earth after a major asteroid collision , 2004, Nature.

[20]  B. Peucker‐Ehrenbrink,et al.  Rhenium‐osmium isotope systematics and platinum group element concentrations in oceanic crust from DSDP/ODP Sites 504 and 417/418 , 2003 .

[21]  B. Schmitz,et al.  A rain of ordinary chondritic meteorites in the early Ordovician , 2001 .

[22]  B. Peucker‐Ehrenbrink,et al.  Rapid determination of Os isotopic composition by sparging OsO4 into a magnetic-sector ICP-MS , 2000 .

[23]  B. Lavielle,et al.  Isotopic signatures and origin of nitrogen in IIE and IVA iron meteorites , 2000 .

[24]  U. Krähenbühl,et al.  The Ordovician chondrite from Brunflo, central Sweden: III. Geochemistry of terrestrial alteration , 2000 .

[25]  J. Ormö,et al.  When a cosmic impact strikes the sea bed , 2000, Geological Magazine.

[26]  E. Sturkell Impact-related Ir anomaly in the Middle Ordovician Lockne impact structure, Jämtland, Sweden , 1998 .

[27]  Brett James Gladman,et al.  Asteroid Showers on Earth after Family Breakup Events , 1998 .

[28]  B. Schmitz,et al.  Accretion rates of meteorites and cosmic dust in the Early Ordovician. , 1997, Science.

[29]  B. Schmitz,et al.  Geochemistry of meteorite-rich marine limestone strata and fossil meteorites from the lower Ordovician at Kinnekulle, Sweden , 1996 .

[30]  R. Clayton,et al.  Oxygen isotope studies of achondrites , 1996 .

[31]  W. Goodfellow,et al.  Use of platinum-group elements for impactor identification: Terrestrial impact craters and Cretaceous-Tertiary boundary , 1993 .

[32]  E. Boyle,et al.  Post-depositional mobility of platinum, iridium and rhenium in marine sediments , 1992, Nature.

[33]  F. E. Wickman,et al.  The Ordovician chondrite from Brunflo, central Sweden, II. Secondary minerals , 1991 .

[34]  R. Clayton,et al.  Oxygen isotope studies of ordinary chondrites , 1991 .

[35]  V. Gostin,et al.  ACRAMAN IMPACT EJECTA AND HOST SHALES - EVIDENCE FOR LOW-TEMPERATURE MOBILIZATION OF IRIDIUM AND OTHER PLATINOIDS , 1990 .

[36]  J. Wasson,et al.  Compositions of chondrites , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[37]  R. Clayton,et al.  Oxygen isotope relationships in iron meteorites , 1983 .

[38]  E. Anders Origin, age, and composition of meteorites , 1964 .

[39]  J. Erzinger,et al.  The Lockne Impact is not Related to the Ordivician L-Chondrite Shower , 2008 .

[40]  Wang Xiaofeng,et al.  Asteroid breakup linked to the Great Ordovician Biodiversification Event , 2008 .

[41]  Martin J. Siegert,et al.  EOS Trans. AGU , 2003 .

[42]  F. Kyte Unmelted meteoritic debris collected from Eltanin ejecta in Polarstern cores from expedition ANT XII/4 , 2002 .

[43]  S. Dermott,et al.  Asteroidal Dust , 2002 .

[44]  K. Keil,et al.  Mineralogy and petrology of silicate inclusions in iron meteorites , 1970 .