Stochastic blockmodels for exchangeable collections of networks

We construct a novel class of stochastic blockmodels using Bayesian nonparametric mixtures. These model allows us to jointly estimate the structure of multiple networks and explicitly compare the community structures underlying them, while allowing us to capture realistic properties of the underlying networks. Inference is carried out using MCMC algorithms that incorporates sequentially allocated split-merge steps to improve mixing. The models are illustrated using a simulation study and a variety of real-life examples.

[1]  Radford M. Neal,et al.  A Split-Merge Markov chain Monte Carlo Procedure for the Dirichlet Process Mixture Model , 2004 .

[2]  Robert E. Tarjan,et al.  Finding Strongly Knit Clusters in Social Networks , 2008, Internet Math..

[3]  David Krackhardt,et al.  Cognitive social structures , 1987 .

[4]  Yuchung J. Wang,et al.  Stochastic Blockmodels for Directed Graphs , 1987 .

[5]  P. Bickel,et al.  A nonparametric view of network models and Newman–Girvan and other modularities , 2009, Proceedings of the National Academy of Sciences.

[6]  A. Raftery,et al.  Model‐based clustering for social networks , 2007 .

[7]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[8]  Paul Thompson,et al.  Mixed Membership Stochastic Blockmodels for the Human Connectome , 2015 .

[9]  Antoine Dutot,et al.  Detecting Community Structure in Amino Acid Interaction Networks , 2009 .

[10]  F. J. Roethlisberger,et al.  Management and the Worker , 1941 .

[11]  J. Galaskiewicz,et al.  Interorganizational resource networks: Formal patterns of overlap , 1978 .

[12]  D. Aldous Representations for partially exchangeable arrays of random variables , 1981 .

[13]  A. Clauset Finding local community structure in networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Paul Erdös,et al.  On random graphs, I , 1959 .

[16]  S. Boorman,et al.  Social structure from multiple networks: I , 1976 .

[17]  J. Sethuraman A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .

[18]  Hans-Peter Kriegel,et al.  Infinite Hidden Relational Models , 2006, UAI.

[19]  Thomas L. Griffiths,et al.  Learning Systems of Concepts with an Infinite Relational Model , 2006, AAAI.

[20]  F. J. Roethlisberger,et al.  Management and the Worker , 2003 .

[21]  Peter D. Hoff,et al.  Latent Space Approaches to Social Network Analysis , 2002 .

[22]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994, Structural analysis in the social sciences.

[23]  M. M. Meyer,et al.  Statistical Analysis of Multiple Sociometric Relations. , 1985 .

[24]  M. E. J. Newman,et al.  Mixing patterns in networks: Empirical results and models , 2002 .

[25]  P. Green,et al.  Bayesian Model-Based Clustering Procedures , 2007 .

[26]  P. Holland,et al.  Local Structure in Social Networks , 1976 .

[27]  Ove Frank,et al.  http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained , 2007 .

[28]  H. White,et al.  STRUCTURAL EQUIVALENCE OF INDIVIDUALS IN SOCIAL NETWORKS , 1977 .

[29]  S. Boorman,et al.  Social Structure from Multiple Networks. I. Blockmodels of Roles and Positions , 1976, American Journal of Sociology.

[30]  J. Pitman Exchangeable and partially exchangeable random partitions , 1995 .