Testing Product States, Quantum Merlin-Arthur Games and Tensor Optimization

We give a test that can distinguish efficiently between product states of n quantum systems and states that are far from product. If applied to a state |ψ⟩ whose maximum overlap with a product state is 1 − ε, the test passes with probability 1 − Θ(ε), regardless of n or the local dimensions of the individual systems. The test uses two copies of |ψ⟩. We prove correctness of this test as a special case of a more general result regarding stability of maximum output purity of the depolarizing channel. A key application of the test is to quantum Merlin-Arthur games with multiple Merlins, where we obtain several structural results that had been previously conjectured, including the fact that efficient soundness amplification is possible and that two Merlins can simulate many Merlins: QMA(k) = QMA(2) for k ≥ 2. Building on a previous result of Aaronson et al., this implies that there is an efficient quantum algorithm to verify 3-SAT with constant soundness, given two unentangled proofs of Õ(√n) qubits. We also show how QMA(2) with log-sized proofs is equivalent to a large number of problems, some related to quantum information (such as testing separability of mixed states) as well as problems without any apparent connection to quantum mechanics (such as computing injective tensor norms of 3-index tensors). As a consequence, we obtain many hardness-of-approximation results, as well as potential algorithmic applications of methods for approximating QMA(2) acceptance probabilities. Finally, our test can also be used to construct an efficient test for determining whether a unitary operator is a tensor product, which is a generalization of classical linearity testing.

[1]  Xiaodi Wu,et al.  Epsilon-net method for optimizations over separable states , 2011, Theor. Comput. Sci..

[2]  Jamie Sikora,et al.  QMA variants with polynomially many provers , 2011, Quantum Inf. Comput..

[3]  Jonathan A. Kelner,et al.  Hypercontractivity, sum-of-squares proofs, and their applications , 2012, STOC '12.

[4]  Or Sattath,et al.  The Complexity of the Separable Hamiltonian Problem , 2011, 2012 IEEE 27th Conference on Computational Complexity.

[5]  François Le Gall,et al.  On QMA protocols with two short quantum proofs , 2011, Quantum Inf. Comput..

[6]  Martin Aulbach CLASSIFICATION OF ENTANGLEMENT IN SYMMETRIC STATES , 2011, 1110.5200.

[7]  Guoming Wang,et al.  Property testing of unitary operators , 2011, 1110.1133.

[8]  Matthew McKague,et al.  On the power quantum computation over real Hilbert spaces , 2011, 1109.0795.

[9]  Michael A. Forbes,et al.  Improved Soundness for QMA with Multiple Provers , 2011, Electron. Colloquium Comput. Complex..

[10]  Matthias Christandl,et al.  A quasipolynomial-time algorithm for the quantum separability problem , 2010, STOC '11.

[11]  F. Brandão,et al.  Faithful Squashed Entanglement , 2010, 1010.1750.

[12]  Alain Tapp,et al.  A Quantum Characterization Of NP , 2007, computational complexity.

[13]  F. Brandão,et al.  A subexponential-time algorithm for the quantum separability problem , 2010 .

[14]  Jing Chen,et al.  Short Multi-Prover Quantum Proofs for SAT without Entangled Measurements , 2010, 1011.0716.

[15]  M. Horodecki,et al.  Constructive counterexamples to the additivity of the minimum output Rényi entropy of quantum channels for all p > 2 , 2009, 0911.2515.

[16]  Julia Kempe,et al.  No Strong Parallel Repetition with Entangled and Non-signaling Provers , 2009, 2010 IEEE 25th Annual Conference on Computational Complexity.

[17]  Salman Beigi,et al.  NP vs QMA_log(2) , 2008, Quantum Inf. Comput..

[18]  Sevag Gharibian,et al.  Strong NP-hardness of the quantum separability problem , 2008, Quantum Inf. Comput..

[19]  Ashley Montanaro,et al.  Quantum boolean functions , 2008, Chic. J. Theor. Comput. Sci..

[20]  R. A. Low,et al.  Learning and testing algorithms for the Clifford group , 2009, 0907.2833.

[21]  Xuelong Li,et al.  Tensors in Image Processing and Computer Vision , 2009, Advances in Pattern Recognition.

[22]  Santosh S. Vempala,et al.  Random Tensors and Planted Cliques , 2009, APPROX-RANDOM.

[23]  M. Hastings Superadditivity of communication capacity using entangled inputs , 2009 .

[24]  Umesh V. Vazirani,et al.  The detectability lemma and quantum gap amplification , 2008, STOC '09.

[25]  Tsuyoshi Ito,et al.  Oracularization and Two-Prover One-Round Interactive Proofs against Nonlocal Strategies , 2008, 2009 24th Annual IEEE Conference on Computational Complexity.

[26]  Alain Tapp,et al.  All Languages in NP Have Very Short Quantum Proofs , 2007, 2009 Third International Conference on Quantum, Nano and Micro Technologies.

[27]  Keiji Matsumoto,et al.  Quantum Merlin-Arthur Proof Systems: Are Multiple Merlins More Helpful to Arthur? , 2003, Chic. J. Theor. Comput. Sci..

[28]  Michael W. Mahoney,et al.  Future Directions in Tensor-Based Computation and Modeling , 2009 .

[29]  G. Tóth,et al.  Entanglement detection , 2008, 0811.2803.

[30]  Fernando G.S.L. Brandao,et al.  Entanglement Theory and the Quantum Simulation of Many-Body Physics , 2008, 0810.0026.

[31]  M. Hastings A counterexample to additivity of minimum output entropy , 2008, 0809.3972.

[32]  Andreas J. Winter,et al.  Counterexamples to the Maximal p-Norm Multiplicativity Conjecture for all p > 1 , 2008, ArXiv.

[33]  Michał Horodecki,et al.  An additive and operational entanglement measure: conditional entanglement of mutual information. , 2008, Physical review letters.

[34]  Bill Fefferman,et al.  The Power of Unentanglement , 2008, 2008 23rd Annual IEEE Conference on Computational Complexity.

[35]  Aram W. Harrow,et al.  Counterexamples to Additivity of Minimum Output p-Rényi Entropy for p Close to 0 , 2007, 0712.3628.

[36]  Salman Beigi,et al.  On the Complexity of Computing Zero-Error and Holevo Capacity of Quantum Channels , 2007, 0709.2090.

[37]  Yi-Kai Liu The complexity of the consistency and N-representability problems for quantum states - eScholarship , 2007, 0712.3041.

[38]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[39]  Rocco A. Servedio,et al.  Quantum Algorithms for Learning and Testing Juntas , 2007, Quantum Inf. Process..

[40]  H. Kimble,et al.  Experimental procedures for entanglement verification , 2006, quant-ph/0611219.

[41]  Klaus Jansen,et al.  Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques , 2006, Lecture Notes in Computer Science.

[42]  Scott Aaronson,et al.  The learnability of quantum states , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[43]  Lawrence M. Ioannou,et al.  Computational complexity of the quantum separability problem , 2006, Quantum Inf. Comput..

[44]  F. Verstraete,et al.  N-representability is QMA-complete , 2006, quant-ph/0609125.

[45]  M. Fannes,et al.  Finite size mean-field models , 2006, quant-ph/0605216.

[46]  S. Walborn,et al.  Experimental determination of entanglement with a single measurement , 2006, Nature.

[47]  M. Junge,et al.  Multiplicativity of Completely Bounded p-Norms Implies a New Additivity Result , 2005, quant-ph/0506196.

[48]  Dan Suciu,et al.  Journal of the ACM , 2006 .

[49]  Renato Renner,et al.  Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.

[50]  M. Horodecki,et al.  Irreversibility for all bound entangled states. , 2005, Physical review letters.

[51]  Santosh S. Vempala,et al.  Tensor decomposition and approximation schemes for constraint satisfaction problems , 2005, STOC '05.

[52]  A. Buchleitner,et al.  Concurrence of mixed multipartite quantum States. , 2004, Physical review letters.

[53]  J. Eisert,et al.  Complete hierarchies of efficient approximations to problems in entanglement theory , 2004 .

[54]  Chris Marriott,et al.  Quantum Arthur–Merlin games , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..

[55]  E. Fischer THE ART OF UNINFORMED DECISIONS: A PRIMER TO PROPERTY TESTING , 2004 .

[56]  P. Goldbart,et al.  Geometric measure of entanglement and applications to bipartite and multipartite quantum states , 2003, quant-ph/0307219.

[57]  Leonid Gurvits Classical deterministic complexity of Edmonds' Problem and quantum entanglement , 2003, STOC '03.

[58]  L. Fortnow,et al.  Quantum property testing , 2002, SODA '03.

[59]  R. Werner,et al.  Counterexample to an additivity conjecture for output purity of quantum channels , 2002, quant-ph/0203003.

[60]  W. T. Gowers,et al.  A new proof of Szemerédi's theorem , 2001 .

[61]  J. Cirac,et al.  Irreversibility in asymptotic manipulations of entanglement. , 2001, Physical review letters.

[62]  R. Cleve,et al.  Quantum fingerprinting. , 2001, Physical review letters.

[63]  R. Werner,et al.  On Some Additivity Problems in Quantum Information Theory , 2000, math-ph/0003002.

[64]  Thomas Kühn,et al.  Remarks on symmetries of trilinear forms , 2000 .

[65]  B. Terhal Bell inequalities and the separability criterion , 1999, quant-ph/9911057.

[66]  Andreas J. Winter,et al.  Coding theorem and strong converse for quantum channels , 1999, IEEE Trans. Inf. Theory.

[67]  Russell Impagliazzo,et al.  Complexity of k-SAT , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).

[68]  H. Nagaoka,et al.  Strong converse to the quantum channel coding theorem , 1998, IEEE Trans. Inf. Theory.

[69]  W. T. Gowers,et al.  A New Proof of Szemerédi's Theorem for Arithmetic Progressions of Length Four , 1998 .

[70]  P. Shor,et al.  QUANTUM-CHANNEL CAPACITY OF VERY NOISY CHANNELS , 1997, quant-ph/9706061.

[71]  David Deutsch,et al.  Stabilization of Quantum Computations by Symmetrization , 1997, SIAM J. Comput..

[72]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[73]  D. Deutsch,et al.  Stabilisation of Quantum Computations by Symmetrisation , 1996, quant-ph/9604028.

[74]  Pérès,et al.  Separability Criterion for Density Matrices. , 1996, Physical review letters.

[75]  Daniel R. Simon,et al.  On the power of quantum computation , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[76]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[77]  Manuel Blum,et al.  Self-testing/correcting with applications to numerical problems , 1990, STOC '90.

[78]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .