A normal-mode analysis of carbon monoxymyoglobin (MbCO) and deoxymyoglobin (Mb) with 170 water molecules is performed for (54)Fe and (57)Fe. A projection is defined that extracts iron out-of-plane vibrational modes and is used to calculate spectra that can be compared with those from resonance Raman scattering. The calculated spectra and the isotopic shift (57)Fe versus (54)Fe agree with the experimental data. At low temperatures the average mean square fluctuations (MSFs) of the protein backbone atoms agree with molecular dynamics simulation. Below 180 K the MSFs of the heme iron agree with the data from Mossbauer spectroscopy. The MSFs of the iron atom relative to the heme are an order of magnitude smaller than the total MSFs of the iron atom. They agree with the data from optical absorption spectroscopy. Thus the MSFs of the iron atom as measured by Mossbauer spectroscopy can be used to probe the overall motion of the heme within the protein matrix, whereas the Gaussian thermal line broadening of the Soret band and the resonance Raman bands can be used to detect local intramolecular iron-porphyrin motions.