Transport-Equilibrium Schemes for Pedestrian Flows with Nonclassical Shocks

This paper deals with the numerical approximation of the solutions of a macroscopic model for the description of the flow of pedestrians. Solutions of the associated Riemann problem are known to be possibly nonclassical in the sense that the underlying discontinuities may well violate Oleinik inequalities, which makes their numerical approximation very sensitive. This study proposes to apply the Transport-Equilibrium strategy proposed in [2] for computing nonclassical solutions of scalar conservation laws to this framework. Numerical evidences are proposed.

[1]  B. Hayes,et al.  Nonclassical Shocks and Kinetic Relations: Finite Difference Schemes , 1998 .

[2]  Christophe Chalons Transport-equilibrium schemes for computing nonclassical shocks. Scalar conservation laws , 2008 .

[3]  Philippe G. LeFloch,et al.  A fully discrete scheme for diffusive-dispersive conservation laws , 2001, Numerische Mathematik.

[4]  P. I. Richards Shock Waves on the Highway , 1956 .

[5]  Christophe Chalons Numerical Approximation of a Macroscopic Model of Pedestrian Flows , 2007, SIAM J. Sci. Comput..

[6]  R. Colombo,et al.  Pedestrian flows and non‐classical shocks , 2005 .

[7]  M J Lighthill,et al.  On kinematic waves II. A theory of traffic flow on long crowded roads , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[8]  B. Hayes,et al.  Non-Classical Shocks and Kinetic Relations: Scalar Conservation Laws , 1997 .

[9]  Denis Serre,et al.  Convergence of a relaxation scheme for hyperbolic systems of conservation laws , 2001, Numerische Mathematik.

[10]  Phillip Colella,et al.  Glimm's Method for Gas Dynamics , 1982 .

[11]  C. Chalons,et al.  High-order entropy-conservative schemes and kinetic relations for van der Waals fluids , 2001 .

[12]  M J Lighthill,et al.  ON KINEMATIC WAVES.. , 1955 .

[13]  Philippe G. LeFloch,et al.  High-Order Schemes, Entropy Inequalities, and Nonclassical Shocks , 2000, SIAM J. Numer. Anal..

[14]  Anthony Leonard,et al.  Lagrangian methods for the tensor-diffusivity subgrid model , 1999 .

[15]  Philippe G. LeFloch,et al.  Computing undercompressive waves with the random choice scheme. Nonclassical shock waves , 2003 .

[16]  C. Chalons,et al.  Bilans d'entropie discrets dans l'approximation numerique des chocs non classiques. Application aux equations de Navier-Stokes multi-pression 2D et a quelques systemes visco-capillaires , 2002 .

[17]  P. LeFloch,et al.  Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves , 2002 .

[18]  Christophe Chalons,et al.  Transport-equilibrium schemes for computing nonclassical shocks , 2006 .