Laplace-Beltrami spectra as 'Shape-DNA' of surfaces and solids

This paper introduces a method to extract 'Shape-DNA', a numerical fingerprint or signature, of any 2d or 3d manifold (surface or solid) by taking the eigenvalues (i.e. the spectrum) of its Laplace-Beltrami operator. Employing the Laplace-Beltrami spectra (not the spectra of the mesh Laplacian) as fingerprints of surfaces and solids is a novel approach. Since the spectrum is an isometry invariant, it is independent of the object's representation including parametrization and spatial position. Additionally, the eigenvalues can be normalized so that uniform scaling factors for the geometric objects can be obtained easily. Therefore, checking if two objects are isometric needs no prior alignment (registration/localization) of the objects but only a comparison of their spectra. In this paper, we describe the computation of the spectra and their comparison for objects represented by NURBS or other parametrized surfaces (possibly glued to each other), polygonal meshes as well as solid polyhedra. Exploiting the isometry invariance of the Laplace-Beltrami operator we succeed in computing eigenvalues for smoothly bounded objects without discretization errors caused by approximation of the boundary. Furthermore, we present two non-isometric but isospectral solids that cannot be distinguished by the spectra of their bodies and present evidence that the spectra of their boundary shells can tell them apart. Moreover, we show the rapid convergence of the heat trace series and demonstrate that it is computationally feasible to extract geometrical data such as the volume, the boundary length and even the Euler characteristic from the numerically calculated eigenvalues. This fact not only confirms the accuracy of our computed eigenvalues, but also underlines the geometrical importance of the spectrum. With the help of this Shape-DNA, it is possible to support copyright protection, database retrieval and quality assessment of digital data representing surfaces and solids. A patent application based on ideas presented in this paper is pending.

[1]  Franz-Erich Wolter Cut Locus and Medial Axis in Global Shape Interrogation and Representation , 1995 .

[2]  I. Chavel Eigenvalues in Riemannian geometry , 1984 .

[3]  Lorenz Halbeisen,et al.  Reconstruction of Weighted Graphs by their Spectrum , 2000, Eur. J. Comb..

[4]  Ron Kimmel,et al.  On Bending Invariant Signatures for Surfaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[6]  Brigitte Beekmann Eigenfunktionen und eigenwerte des laplaceoperators auf drehflächen und die gliederung des spektrums nach den Darstellungen der Isometriengruppe , 1988 .

[7]  C. Moler,et al.  APPROXIMATIONS AND BOUNDS FOR EIGENVALUES OF ELLIPTIC OPERATORS , 1967 .

[8]  Nicholas M. Patrikalakis,et al.  Shape intrinsic fingerprints for free-form object matching , 2003, SM '03.

[9]  Y. C. Verdière,et al.  Construction de laplaciens dont une partie finie du spectre est donnée , 1987 .

[10]  Themistocles M. Rassias,et al.  Old and New Aspects in Spectral Geometry , 2001 .

[11]  Martin Reuter,et al.  Laplace spectra for shape recognition , 2006 .

[12]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[13]  Claudio Perez Tamargo Can one hear the shape of a drum , 2008 .

[14]  Klaus-Dieter Semmler,et al.  Some planar isospectral domains , 2010, 1005.1839.

[15]  W. Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[16]  Ali Shokoufandeh,et al.  Scale-space representation of 3D models and topological matching , 2003, SM '03.

[17]  Tobin A. Driscoll,et al.  Eigenmodes of Isospectral Drums , 1997, SIAM Rev..

[18]  P. Buser,et al.  Geometry and Spectra of Compact Riemann Surfaces , 1992 .

[19]  Niklas Peinecke,et al.  Laplace-spectra as fingerprints for shape matching , 2005, SPM '05.

[20]  Thomas R. Kurfess,et al.  Newton methods for parametric surface registration. Part I. Theory , 2003, Comput. Aided Des..

[21]  Franz-Erich Wolter,et al.  Geometric Modeling of Complex Shapes and Engineering Artifacts , 2004 .

[22]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[23]  Jean-Daniel Boissonnat,et al.  Isotopic Implicit Surface Meshing , 2004, STOC '04.

[24]  David L. Webb,et al.  Isospectral plane domains and surfaces via Riemannian orbifolds , 1992 .

[25]  H. Weyl Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) , 1912 .

[26]  Yutaka Ohtake,et al.  Dual/Primal mesh optimization for polygonized implicit surfaces , 2002, SMA '02.

[27]  H. McKean,et al.  Curvature and the Eigenvalues of the Laplacian , 1967 .

[28]  M. Berger Riemannian Geometry During the Second Half of the Twentieth Century , 2000 .

[29]  Guoliang Xu Discrete Laplace-Beltrami operators and their convergence , 2004, Comput. Aided Geom. Des..

[30]  D. Ross Computer-aided design , 1961, CACM.

[31]  J. G. Lewis,et al.  A Shifted Block Lanczos Algorithm for Solving Sparse Symmetric Generalized Eigenproblems , 1994, SIAM J. Matrix Anal. Appl..

[32]  Lloyd N. Trefethen,et al.  Reviving the Method of Particular Solutions , 2005, SIAM Rev..

[33]  M. Berger,et al.  Le Spectre d'une Variete Riemannienne , 1971 .

[34]  E. Cuthill,et al.  Reducing the bandwidth of sparse symmetric matrices , 1969, ACM '69.

[35]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[36]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.

[37]  C. Bandle Isoperimetric inequalities and applications , 1980 .

[38]  H. Piaggio Differential Geometry of Curves and Surfaces , 1952, Nature.

[39]  J. Descloux,et al.  An accurate algorithm for computing the eigenvalues of a polygonal membrane , 1983 .

[40]  M. Protter Can one hear the shape of a drum? revisited , 1987 .

[41]  Franz-Erich Wolter,et al.  Local and global geometric methods for analysis, interrogation, reconstruction, modification and design of shape , 2000, Proceedings Computer Graphics International 2000.

[42]  Richard J. Prokop,et al.  A survey of moment-based techniques for unoccluded object representation and recognition , 1992, CVGIP Graph. Model. Image Process..

[43]  Karthik Ramani,et al.  Three-dimensional shape searching: state-of-the-art review and future trends , 2005, Comput. Aided Des..

[44]  S. Zelditch The inverse spectral problem for surfaces of revolution , 2000, math-ph/0002012.

[45]  Gilbert Strang,et al.  Introduction to applied mathematics , 1988 .

[46]  Alexander M. Bronstein,et al.  Expression-Invariant 3D Face Recognition , 2003, AVBPA.

[47]  R. Courant,et al.  Methods of Mathematical Physics, Vol. I , 1954 .

[48]  Thomas J. R. Hughes,et al.  Encyclopedia of computational mechanics , 2004 .

[49]  H. Weyl Ueber die asymptotische Verteilung der Eigenwerte , 1911 .

[50]  Oliver Benedens,et al.  Geometry-Based Watermarking of 3D Models , 1999, IEEE Computer Graphics and Applications.

[51]  G. Budworth The Knot Book , 1983 .

[52]  I. M. Gelfand,et al.  Automorphic functions and the theory of representations , 1987 .

[53]  David P. Dobkin,et al.  A search engine for 3D models , 2003, TOGS.

[54]  Nicholas M. Patrikalakis,et al.  Shape Intrinsic Properties for Free-Form Object Matching , 2003, Journal of Computing and Information Science in Engineering.

[55]  Peter Sarnak,et al.  Compact isospectral sets of surfaces , 1988 .

[56]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[57]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[58]  R. Taylor The Finite Element Method, the Basis , 2000 .

[59]  Daniel Ocone,et al.  Degenerate Variance Control of a One-Dimensional Diffusion , 2000, SIAM J. Control. Optim..

[60]  Hiroshi Masuda,et al.  A shape-preserving data embedding algorithm for NURBS curves and surfaces , 1999, 1999 Proceedings Computer Graphics International.

[61]  S. Minakshisundaram,et al.  Some Properties of the Eigenfunctions of The Laplace-Operator on Riemannian Manifolds , 1949, Canadian Journal of Mathematics.

[62]  David L. Webb,et al.  Isospectral Convex Domains in Euclidean Space , 1994 .

[63]  Ryutarou Ohbuchi,et al.  A Frequency‐Domain Approach to Watermarking 3D Shapes , 2002, Comput. Graph. Forum.

[64]  Craig Gotsman,et al.  Spectral compression of mesh geometry , 2000, EuroCG.

[65]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.