Structural Extensions of Display Calculi: A General Recipe
暂无分享,去创建一个
[1] Nuel Belnap,et al. Display logic , 1982, J. Philos. Log..
[2] M. de Rijke,et al. Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.
[3] Kazushige Terui,et al. Expanding the Realm of Systematic Proof Theory , 2009, CSL.
[4] Alex K. Simpson,et al. Computational Adequacy in an Elementary Topos , 1998, CSL.
[5] James Brotherston,et al. Bunched Logics Displayed , 2012, Studia Logica.
[6] Rajeev Goré,et al. Substructural Logics on Display , 1998, Log. J. IGPL.
[7] Heinrich Wansing,et al. Constructive negation, implication, and co-implication , 2008, J. Appl. Non Class. Logics.
[8] M. Kracht. Power and Weakness of the Modal Display Calculus , 1996 .
[9] Alessio Guglielmi,et al. A system of interaction and structure , 1999, TOCL.
[10] Kazushige Terui,et al. From Axioms to Analytic Rules in Nonclassical Logics , 2008, 2008 23rd Annual IEEE Symposium on Logic in Computer Science.
[11] Dirk Pattinson,et al. Constructing Cut Free Sequent Systems with Context Restrictions Based on Classical or Intuitionistic Logic , 2013, ICLA.
[12] M. E. Szabo,et al. The collected papers of Gerhard Gentzen , 1969 .
[13] M. Fitting. Proof Methods for Modal and Intuitionistic Logics , 1983 .
[14] Frank Wolter,et al. On Logics with Coimplication , 1998, J. Philos. Log..
[15] H. Wansing. Displaying Modal Logic , 1998 .
[16] Rajeev Goré,et al. Gaggles, Gentzen and Galois: How to display your favourite substructural logic , 1998, Logic Journal of the IGPL.
[17] Rajeev Goré,et al. On the Correspondence between Display Postulates and Deep Inference in Nested Sequent Calculi for Tense Logics , 2011, Log. Methods Comput. Sci..
[18] Peter W. O'Hearn,et al. The Logic of Bunched Implications , 1999, Bulletin of Symbolic Logic.
[19] Sara Negri. Logic Colloquium 2005: Proof analysis in non-classical logics , 2007 .
[20] Arnon Avron,et al. A constructive analysis of RM , 1987, Journal of Symbolic Logic.