Structural Extensions of Display Calculi: A General Recipe

We present a systematic procedure for constructing cut-free display calculi for axiomatic extensions of a logic via structural rule extensions. The sufficient conditions for the procedure are given in terms of purely syntactic abstract properties of the display calculus and thus the method applies to large classes of calculi and logics. As a case study, we present cut-free calculi for extensions of well-known logics including Bi-intuitionistic and tense logic.

[1]  Nuel Belnap,et al.  Display logic , 1982, J. Philos. Log..

[2]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[3]  Kazushige Terui,et al.  Expanding the Realm of Systematic Proof Theory , 2009, CSL.

[4]  Alex K. Simpson,et al.  Computational Adequacy in an Elementary Topos , 1998, CSL.

[5]  James Brotherston,et al.  Bunched Logics Displayed , 2012, Studia Logica.

[6]  Rajeev Goré,et al.  Substructural Logics on Display , 1998, Log. J. IGPL.

[7]  Heinrich Wansing,et al.  Constructive negation, implication, and co-implication , 2008, J. Appl. Non Class. Logics.

[8]  M. Kracht Power and Weakness of the Modal Display Calculus , 1996 .

[9]  Alessio Guglielmi,et al.  A system of interaction and structure , 1999, TOCL.

[10]  Kazushige Terui,et al.  From Axioms to Analytic Rules in Nonclassical Logics , 2008, 2008 23rd Annual IEEE Symposium on Logic in Computer Science.

[11]  Dirk Pattinson,et al.  Constructing Cut Free Sequent Systems with Context Restrictions Based on Classical or Intuitionistic Logic , 2013, ICLA.

[12]  M. E. Szabo,et al.  The collected papers of Gerhard Gentzen , 1969 .

[13]  M. Fitting Proof Methods for Modal and Intuitionistic Logics , 1983 .

[14]  Frank Wolter,et al.  On Logics with Coimplication , 1998, J. Philos. Log..

[15]  H. Wansing Displaying Modal Logic , 1998 .

[16]  Rajeev Goré,et al.  Gaggles, Gentzen and Galois: How to display your favourite substructural logic , 1998, Logic Journal of the IGPL.

[17]  Rajeev Goré,et al.  On the Correspondence between Display Postulates and Deep Inference in Nested Sequent Calculi for Tense Logics , 2011, Log. Methods Comput. Sci..

[18]  Peter W. O'Hearn,et al.  The Logic of Bunched Implications , 1999, Bulletin of Symbolic Logic.

[19]  Sara Negri Logic Colloquium 2005: Proof analysis in non-classical logics , 2007 .

[20]  Arnon Avron,et al.  A constructive analysis of RM , 1987, Journal of Symbolic Logic.