Augmented reality and pedestrian navigation through its implementation in m-learning and e-learning: Evaluation of an educational program in Chile

The implementation of Mobile Pedestrian Navigation and Augmented Reality in mobile learning contexts shows new forms of interaction when students are taught by means of learning activities in formal settings. This research presents the educational, quantitative, and qualitative evaluation of an Augmented Reality and Mobile Pedestrian Navigation app. The software was designed for mobile learning in an educational context, to evaluate its effectiveness when applied as a teaching tool, in comparison to similar tools such as those present in e-learning. A mixed-method analysis was used, with primary school students from Chile as subjects (n=143). They were split into one control group and one experimental group. The control group worked in an e-learning environment, while the experimental group performed the activity as field work, making use of the app (m-learning). Students were evaluated pretest and posttest using an objective test to measure their level of learning. In parallel, a satisfaction survey was carried out concerning the use of these technologies, in addition to interviews with several students and teachers of the experimental group. Pretest-posttest results indicate that the experimental group outperformed the control group in their learning levels. The results of the interviews and the satisfaction survey show that these technologies, combined with fieldwork, increase the effectiveness of the teaching-learning processes. Further, they promote the interaction of students with contents for learning, and they improve students performance in the educational process. The main goal is to provide a methodology for the analysis of an ad-hoc designed app. The app is intended to provide an m-learning process for subjects being taught about cultural heritage. The quantitative and qualitative results obtained show that it can be more effective than using similar technologies in e-learning contexts. It shows a comparison of educational results between m-learning and e-learning.Augmented Reality and Digital maps are shown to produce higher levels of learning.Better scores are achieved in the context of m-learning compared to e-learning.There is a positive perception of both students and teachers when using these tools.

[1]  Tim T. Favier,et al.  Exploring the characteristics of an optimal design for inquiry-based geography education with Geographic Information Systems , 2017, Comput. Educ..

[2]  Kevin Wong,et al.  A Review of Augmented Reality and Mobile-Augmented Reality Technology , 2014 .

[3]  Stephen J. H. Yang,et al.  Effects of Situated Mobile Learning Approach on Learning Motivation and Performance of EFL Students , 2016, J. Educ. Technol. Soc..

[4]  Facultad de Psicología,et al.  LAS TEORÍAS DE LOS TESTS: TEORÍA CLÁSICA Y TEORÍA DE RESPUESTA A LOS ÍTEMS , 2010 .

[5]  Yao-Ting Sung,et al.  Apply an Augmented Reality in a Mobile Guidance to Increase Sense of Place for Heritage Places , 2015, J. Educ. Technol. Soc..

[6]  J. Nunnally Psychometric Theory (2nd ed), New York: McGraw-Hill. , 1978 .

[7]  Antonio Miguel Martínez-Graña,et al.  A virtual tour of geological heritage: Valourising geodiversity using Google Earth and QR code , 2013, Comput. Geosci..

[8]  D. Friess,et al.  Incorporating “virtual” and “real world” field trips into introductory geography modules , 2016 .

[9]  D. Campbell,et al.  EXPERIMENTAL AND QUASI-EXPERIMENT Al DESIGNS FOR RESEARCH , 2012 .

[10]  R. Grissom,et al.  Effect Sizes for Research : Univariate and Multivariate Applications, Second Edition , 2005 .

[11]  Leon Van Schaik Spatial Intelligence: New Futures for Architecture , 2008 .

[12]  Kevin Wong,et al.  A Review of Augmented Reality and Mobile-Augmented Reality Technology: Learning in Tertiary Education , 2014 .

[13]  H. Gardner Multiple intelligences : new horizons , 2006 .

[14]  Francisco José García-Peñalvo,et al.  Learning Object Model and Framework Design for the Digital Modules Production , 2013 .

[15]  Jorge Martín Gutiérrez,et al.  Applying augmented reality in engineering education to improve academic performance & student motivation , 2014 .

[16]  Diana Gaviria,et al.  Differential Calculus Teaching through Virtual Learning Objects in the Field of Management Sciences , 2015 .

[17]  R. Sitgreaves Psychometric theory (2nd ed.). , 1979 .

[18]  Fernando Martínez Abad Evaluación y Formación en Competencias Informacionales en la Educación Secundaria Obligatoria , 2013 .

[19]  Kevin Kok Wai Wong,et al.  Learning with desktop virtual reality: Low spatial ability learners are more positively affected , 2014, Comput. Educ..

[20]  J. G. C. Navarro,et al.  APRENDIZAJE BASADO EN COMPETENCIAS: UNA PROPUESTA PARA LA AUTOEVALUACIÓN DEL DOCENTE , 2012 .

[21]  R. Mayer,et al.  Multimedia Learning: Frontmatter , 2001 .

[22]  Gregory W. Corder,et al.  Nonparametric Statistics for Non-Statisticians: A Step-by-Step Approach , 2009 .

[23]  Justo Arnal Agustín,et al.  Investigación educativa: fundamentos y metodologías , 1992 .

[24]  Edgar Erdfelder,et al.  A short tutorial of GPower , 2007 .

[25]  Umair Rehman,et al.  Augmented-Reality-Based Indoor Navigation: A Comparative Analysis of Handheld Devices Versus Google Glass , 2017, IEEE Transactions on Human-Machine Systems.

[26]  Kok Wai Wong,et al.  A review of augmented reality (AR) and mobile-augmented reality (mAR) technology: Learning in tertiary education , 2013 .

[27]  Jorge Martín-Gutiérrez,et al.  Interactive Tourist Guide: Connecting Web 2.0, Augmented Reality and QR Codes , 2013, VARE.

[28]  Hyungki Kim,et al.  A framework for the automatic 3D city modeling using the panoramic image from mobile mapping system and digital maps , 2014, 2014 IEEE Virtual Reality (VR).

[29]  Raúl Reinoso Ortiz Posibilidades de la realidad aumentada en educación , 2012 .

[30]  Chris Dede,et al.  EcoMOBILE: Integrating augmented reality and probeware with environmental education field trips , 2013, Comput. Educ..

[31]  V. Gil,et al.  Medición en ciencias sociales y de la salud , 2011 .

[33]  Antonio Pardo Merino,et al.  SPSS 11: Guía para el análisis de datos , 2002 .

[34]  N. Newcombe,et al.  Early Education for Spatial Intelligence: Why, What, and How , 2010 .

[35]  Oliver Müller,et al.  Augmented reality in informal learning environments: A field experiment in a mathematics exhibition , 2014, Comput. Educ..

[36]  Ministerio de Educación Estadísticas de la educación 2004. , 2003 .

[37]  Francisco J. García-Peñalvo,et al.  Informal tools in formal contexts: Development of a model to assess the acceptance of mobile technologies among teachers , 2016, Comput. Hum. Behav..

[38]  Yongtian Wang,et al.  Teaching based on augmented reality for a technical creative design course , 2015, Comput. Educ..

[39]  Santiago Nieto Martín Medidas de tendencia central y variabilidad , 2010 .

[40]  Helen Crompton,et al.  The Use of Mobile Learning in Science: A Systematic Review , 2016, Journal of Science Education and Technology.

[41]  Richard E. Mayer,et al.  Multimedia Learning , 2001, Visible Learning Guide to Student Achievement.

[42]  Matthew Zook,et al.  Augmented Reality in Urban Places: Contested Content and the Duplicity of Code , 2013 .

[43]  Aboelmagd Noureldin,et al.  Motion Mode Recognition for Indoor Pedestrian Navigation Using Portable Devices , 2016, IEEE Transactions on Instrumentation and Measurement.

[44]  Tzu-Chien Liu,et al.  The design and implementation of a meaningful learning-based evaluation method for ubiquitous learning , 2011, Comput. Educ..

[45]  Charles Teddlie,et al.  Mixed Methods Sampling A Typology With Examples , 2016 .

[46]  Steven E. Higgins,et al.  Citation for Published Item: Use Policy Effects of Traditional, Blended and E-learning on Students' Achievement in Higher Education , 2022 .

[47]  Nathalie Cayla,et al.  An Overview of New Technologies Applied to the Management of Geoheritage , 2014, Geoheritage.

[48]  Wei Huang,et al.  A 3D GIS-based interactive registration mechanism for outdoor augmented reality system , 2016, Expert Syst. Appl..

[49]  Juan Francisco Martín Izard Técnicas de encuesta: cuestionario y entrevista , 2010 .

[50]  Pilar Martínez Clares,et al.  Formación basada en competencias , 2009 .

[51]  M. Castro,et al.  Potencia estadística y cálculo del tamaño del efecto en G*Power: complementos a las pruebas de significación estadística y su aplicación en psicología // Statistical power and effect size calculating in G*Power , 2014 .

[52]  Trupti Satpute,et al.  Augmented reality in e-learning review of prototype designs for usability evaluation , 2015, 2015 International Conference on Communication, Information & Computing Technology (ICCICT).

[53]  Rebecca Ferguson,et al.  Augmented Reality and Mobile Learning: the State of the Art , 2013, mLearn.

[54]  E. B. Pineda,et al.  Metodología de la investigación , 2008 .

[55]  Francisco J. García-Peñalvo,et al.  Mobile learning: tendencies and lines of research , 2013, TEEM '13.

[56]  Chris Dede,et al.  Augmented Reality Teaching and Learning , 2014 .

[57]  Maria del Carmen Juan Lizandra,et al.  Mobile learning vs. traditional classroom lessons: a comparative study , 2015, J. Comput. Assist. Learn..

[58]  Tapio Lokki,et al.  Auditory Distance Presentation in an Urban Augmented Reality Environment , 2015, TAP.

[59]  Antonio Colmenar Santos,et al.  Recursos digitales autónomos mediante realidad aumentada , 2014 .

[60]  Alejandra Martínez-Monés,et al.  City Ads: Embedding Virtual Worlds and Augmented Reality in Everyday Educational Practice , 2014, J. Univers. Comput. Sci..

[61]  F. Zaini,et al.  THE PRINCIPLE OF DEPTH FOR UNDERGROUND LAND DEVELOPMENT: A REVIEW , 2015 .