Slow consistency
暂无分享,去创建一个
[1] Andreas Weiermann,et al. Sometimes Slow Growing is Fast Growing , 1997, Ann. Pure Appl. Log..
[2] J. Paris. A Mathematical Incompleteness in Peano Arithmetic , 1977 .
[3] Jeff B. Paris,et al. A Hierarchy of Cuts in Models of Arithmetic , 1980 .
[4] Michael Rathjen,et al. The Realm of Ordinal Analysis , 2007 .
[5] D. Guaspari,et al. Partially conservative extensions of arithmetic , 1979 .
[6] Jan Krajícek,et al. On the structure of initial segments of models of arithmetic , 1989, Arch. Math. Log..
[7] Richard Sommer,et al. Transfinite Induction within Peano Arithmetic , 1995, Ann. Pure Appl. Log..
[8] Harvey M. Friedman,et al. Elementary Descent Recursion and Proof Theory , 1995, Ann. Pure Appl. Log..
[9] Stephen G. Simpson,et al. Nichtbeweisbarkeit von gewissen kombinatorischen Eigenschaften endlicher Bäume , 1985, Arch. Math. Log..
[10] Stanley S. Wainer. Slow Growing Versus Fast Growing , 1989, J. Symb. Log..
[11] E. A. Cichon,et al. The slow-growing and the Graegorczyk hierarchies , 1983, Journal of Symbolic Logic.
[12] S. Wainer,et al. Provably computable functions and the fast growing hierarchy , 1987 .
[13] Robert Solovay. Injecting Inconsistencies into Models of PA , 1989, Ann. Pure Appl. Log..
[14] Diana Schmidt,et al. Built-up systems of fundamental sequences and hierarchies of number-theoretic functions , 1977, Arch. Math. Log..
[15] Michael Rathjen,et al. The art of ordinal analysis , 2006 .
[16] Lars Kristiansen. Subrecursive degrees and fragments of Peano Arithmetic , 2001, Arch. Math. Log..
[17] Michael Rathjen,et al. Theories and Ordinals in Proof Theory , 2006, Synthese.