A novel thermomechanical energy conversion cycle

This paper presents a new power cycle for direct conversion of thermomechanical energy into electrical energy performed on pyroelectric materials. It consists sequentially of (i) an isothermal electric poling process performed under zero stress followed by (ii) a combined uniaxial compressive stress and heating process, (iii) an isothermal electric de-poling process under uniaxial stress, and finally (iv) the removal of compressive stress during a cooling process. The new cycle was demonstrated experimentally on [001]-poled PMN-28PT single crystals. The maximum power and energy densities obtained were 41W/L and 41J/L/cycle respectively for cold and hot source temperatures of 22 and 130°C, electric field between 0.2 and 0.95MV/m, and with uniaxial load of 35.56MPa at frequency of 1Hz. The performance and constraints on the operating conditions of the new cycle were compared with those of the Olsen cycle. The new cycle was able to generate power at temperatures below those of the Olsen cycle. In addition, the new power cycle can adapt to changing thermal and mechanical conditions.

[1]  M. Dresselhaus,et al.  Perspectives on thermoelectrics: from fundamentals to device applications , 2012 .

[2]  Wenwu Cao,et al.  Electric field effects on the phase transitions in [001]-oriented ( 1 − x ) Pb ( Mg 1 / 3 Nb 2 / 3 ) O 3 − x PbTiO 3 single crystals with compositions near the morphotropic phase boundary , 2003 .

[3]  Sébastien Pruvost,et al.  Energy harvesting based on Ericsson pyroelectric cycles in a relaxor ferroelectric ceramic , 2008 .

[4]  T. Shrout,et al.  Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals , 1997 .

[5]  Panos G. Datskos,et al.  Development of MEMS based pyroelectric thermal energy harvesters , 2011, Defense + Commercial Sensing.

[6]  M. Hooker Properties of PZT-Based Piezoelectric Ceramics Between-150 and 250°C , 1998 .

[7]  Laurent Pilon,et al.  Pyroelectric energy harvesting using Olsen cycles in purified and porous poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] thin films , 2011 .

[8]  Laurent Pilon,et al.  The pyroelectric energy harvesting capabilities of PMN–PT near the morphotropic phase boundary , 2011 .

[9]  Christopher S. Lynch,et al.  The effect of uniaxial stress on the electro-mechanical response of 8/65/35 PLZT , 1996 .

[10]  Laurent Pilon,et al.  Phase transitions and thermal expansion in pyroelectric energy conversion , 2013, Applied Physics Letters.

[11]  Haosu Luo,et al.  Investigation of the electrical properties of (1 − x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 single crystals with special reference to pyroelectric detection , 2009 .

[12]  William F. Butler,et al.  A pyroelectric energy converter which employs regeneration , 1981 .

[13]  D. G. Thombare,et al.  TECHNOLOGICAL DEVELOPMENT IN THE STIRLING CYCLE ENGINES , 2008 .

[14]  S. Lang,et al.  Sourcebook of pyroelectricity , 1974 .

[15]  Christopher S. Lynch,et al.  Pyroelectric waste heat energy harvesting using relaxor ferroelectric 8/65/35 PLZT and the Olsen cycle , 2012 .

[16]  Laurent Pilon,et al.  Pyroelectric energy converter using co-polymer P(VDF-TrFE) and Olsen cycle for waste heat energy harvesting , 2010 .

[17]  E. Stefanakos,et al.  A REVIEW OF THERMODYNAMIC CYCLES AND WORKING FLUIDS FOR THE CONVERSION OF LOW-GRADE HEAT , 2010 .

[18]  Christopher S. Lynch,et al.  Relaxor ferroelectric PMN-32%PT crystals under stress, electric field and temperature loading : II-33-mode measurements , 2005 .

[19]  R. B. Olsen,et al.  High efficieincy direct conversion of heat to electrical energy-related pyroelectric measurements , 1982 .

[20]  R. Olsen,et al.  Ferroelectric Conversion of Heat to Electrical EnergyA Demonstration , 1982 .

[21]  Christopher S. Lynch,et al.  Purified and porous poly(vinylidene fluoride-trifluoroethylene) thin films for pyroelectric infrared sensing and energy harvesting , 2010, Smart Materials and Structures.

[22]  J. Briscoe,et al.  Cascaded pyroelectric energy converter , 1984 .

[23]  W. J. Merz,et al.  Double Hysteresis Loop of BaTiO 3 at the Curie Point , 1953 .

[24]  Y. S. Touloukian Thermophysical properties of matter , 1970 .

[25]  I.P. Kaminow,et al.  Principles and applications of ferroelectrics and related materials , 1978, Proceedings of the IEEE.

[26]  R. Olsen,et al.  Pyroelectric energy conversion: hysteresis loss and temperature sensitivity of a ferroelectric material , 1983 .

[27]  C. Chen,et al.  Effects of stress and electric field on the electromechanical properties of Pb(Mg1∕3Nb2∕3)O3–0.32PbTiO3 single crystals , 2005 .

[28]  Alexander Schwartz,et al.  Fundamentals Of Engineering Thermodynamics , 2016 .

[29]  Laurent Pilon,et al.  A novel thermally biased mechanical energy conversion cycle , 2013 .

[30]  P. Sharma Mechanics of materials. , 2010, Technology and health care : official journal of the European Society for Engineering and Medicine.

[31]  W. Eichenauer,et al.  Thermophysical Properties of Matter. Volume 4: Specific Heat, Metallic Elements and Alloys. Herausgeber: Y. S. Touloukian und C. Y. Ho, IFI/Plenum, New York‐Washington 1970. Vertrieb in Europa: Heyden & Son, Ltd., London. 830 Seiten, Preis: DM 260,–. , 1971 .

[32]  H. Luo,et al.  Influence of the electric field on structural transformations and phase boundary for PMg1/3Nb2/3O3-xPbTiO3 single crystals , 2009 .

[33]  王军波,et al.  Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency , 2010 .

[34]  Laurent Pilon,et al.  WASTE HEAT ENERGY HARVESTING USING OLSEN CYCLE ON 0 : 945 PB(ZN 1 = 3 NB 2 = 3 )O 3 − 0 : 055 PBTIO 3 SINGLE CRYSTALS , 2012 .

[35]  Zhenrong Li,et al.  Dielectric/ferroelectric response and phase transition of PMN0.32PT single crystal , 2002 .

[36]  Z. Ye,et al.  Morphotropic domain structures and phase transitions in relaxor-based piezo-/ferroelectric (1−x)Pb(Mg1/3Nb2/3)O3−xPbTiO3 single crystals , 2000 .

[37]  D. Viehland,et al.  Effect of uniaxial stress on the large-signal electromechanical properties of electrostrictive and piezoelectric lead magnesium niobate lead titanate ceramics , 2004 .

[38]  D. Viehland,et al.  Electromechanical coupling coefficient of 〈001〉-oriented Pb(Mg1/3Nb2/3)O3–PbTiO3 cystals: Stress and temperature independence , 2001 .

[39]  Hwan R. Jo,et al.  Pyroelectric energy conversion using PLZT ceramics and the ferroelectric–ergodic relaxor phase transition , 2013 .

[40]  Zuyong Feng,et al.  Effect of uniaxial stress on the electromechanical response of ⟨001⟩-oriented Pb(Mg1∕3Nb2∕3)O3–PbTiO3 crystals , 2005 .

[41]  E. Colla,et al.  Dielectric properties of (PMN)(1−x)(PT)x single crystals for various electrical and thermal histories , 1998 .

[42]  Laurent Pilon,et al.  Direct thermal to electrical energy conversion using 9.5/65/35 PLZT ceramics in the ergodic relaxor phase , 2012, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[43]  Hari Singh Nalwa,et al.  Handbook of advanced electronic and photonic materials and devices , 2001 .

[44]  Henry A. Sodano,et al.  A review of power harvesting using piezoelectric materials (2003–2006) , 2007 .

[45]  E. W. Jacobs,et al.  Pyroelectric conversion cycle of vinylidene fluoride‐trifluoroethylene copolymer , 1985 .

[46]  Dan Zhou,et al.  Characterization of complete electromechanical constants of rhombohedral 0.72Pb(Mg1/3Nb2/3)–0.28PbTiO3 single crystals , 2008 .

[47]  Yiping Guo,et al.  The phase transition sequence and the location of the morphotropic phase boundary region in (1 − x)[Pb (Mg1/3 Nb2/3)O3 ]–xPbTiO3 single crystal , 2003 .

[48]  Peter Woias,et al.  A self-sustaining micro thermomechanic-pyroelectric generator , 2011 .

[49]  O. Schmidt,et al.  Electrical characterization of PMN–28%PT(001) crystals used as thin-film substrates , 2010 .

[50]  Laurent Pilon,et al.  Pyroelectric waste heat energy harvesting using heat conduction , 2012 .

[51]  Laurent Pilon,et al.  Waste heat energy harvesting using the Olsen cycle on 0.945Pb(Zn1/3Nb2/3)O3– 0.055PbTiO3 single crystals , 2012 .

[52]  Christopher S. Lynch,et al.  Relaxor ferroelectric PMN-32%PT crystals under stress and electric field loading: I-32 mode measurements , 2004 .

[53]  G. Höhne,et al.  Metrologically based procedures for the temperature, heat and heat flow rate calibration of DSC , 1997 .