Deep Learning Identifies High-z Galaxies in a Central Blue Nugget Phase in a Characteristic Mass Range
暂无分享,去创建一个
M. Huertas-Company | G. F. Snyder | D. C. Koo | J. R. Primack | M. Huertas-Company | M. Bernardi | D. Tuccillo | B. Margalef-Bentabol | A. Dekel | G. Snyder | J. Primack | D. Ceverino | S. Lapiner | A. Dekel | H. Dom'inguez-S'anchez | M. Bernardi | R. Simons | D. Ceverino | D. Tuccillo | S. Lapiner | R. C. Simons | Z. Chen | H. Dom'inguez-S'anchez | C. T. Lee | B. Margalef-Bentabol | D. Koo | Z. Chen
[1] B. J. Weiner,et al. accepted to the Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE EVOLUTION OF GALAXY MERGERS AND MORPHOLOGY AT Z < 1.2 IN THE EXTENDED GROTH STRIP , 2007 .
[2] Garth D. Illingworth,et al. Confirmation of the Remarkable Compactness of Massive Quiescent Galaxies at z ~ 2.3: Early-Type Galaxies Did not Form in a Simple Monolithic Collapse , 2008, 0802.4094.
[3] Christopher E. Moody,et al. CANDELS+3D-HST: COMPACT SFGs AT z ∼ 2–3, THE PROGENITORS OF THE FIRST QUIESCENT GALAXIES , 2013, 1311.5559.
[4] Sander Dieleman,et al. Rotation-invariant convolutional neural networks for galaxy morphology prediction , 2015, ArXiv.
[5] S. Faber,et al. Evolution of galaxy shapes from prolate to oblate through compaction events , 2015, 1512.06268.
[6] Jose Luis. Sersic,et al. Atlas de Galaxias Australes , 1968 .
[7] A. Kravtsov. On the Origin of the Global Schmidt Law of Star Formation , 2003, astro-ph/0303240.
[8] V. Villar,et al. UV-TO-FIR ANALYSIS OF SPITZER/IRAC SOURCES IN THE EXTENDED GROTH STRIP. I. MULTI-WAVELENGTH PHOTOMETRY AND SPECTRAL ENERGY DISTRIBUTIONS , 2011, 1101.3308.
[9] L. Ho,et al. Detailed structural decomposition of galaxy images , 2002, astro-ph/0204182.
[10] Guillermo Barro,et al. Compaction and quenching of high-z galaxies in cosmological simulations: blue and red nuggets , 2014, 1412.4783.
[11] C. Carollo,et al. SURFACE DENSITY EFFECTS IN QUENCHING: CAUSE OR EFFECT? , 2016, 1604.06459.
[12] A. Dressler,et al. RETURN TO [Log-]NORMALCY: RETHINKING QUENCHING, THE STAR FORMATION MAIN SEQUENCE, AND PERHAPS MUCH MORE , 2016, 1604.00016.
[13] A. Klypin,et al. Adaptive Refinement Tree: A New High-Resolution N-Body Code for Cosmological Simulations , 1997, astro-ph/9701195.
[14] E. al.,et al. The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.
[15] Stefano Casertano,et al. CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3754.
[16] Extremely compact massive galaxies at z ~ 1.4 , 2006, astro-ph/0608657.
[17] A. Dekel,et al. Radiative feedback and the low efficiency of galaxy formation in low-mass haloes at high redshift , 2013, 1307.0943.
[18] J. Primack,et al. Accelerating dust temperature calculations with graphics-processing units , 2009, 0907.3768.
[19] Ankur Taly,et al. Axiomatic Attribution for Deep Networks , 2017, ICML.
[20] Kirpal Nandra,et al. CANDELS MULTI-WAVELENGTH CATALOGS: SOURCE DETECTION AND PHOTOMETRY IN THE GOODS-SOUTH FIELD , 2013, 1308.4405.
[21] H. Rix,et al. Toward an Understanding of the Rapid Decline of the Cosmic Star Formation Rate , 2005, astro-ph/0502246.
[22] A. Koekemoer,et al. GALAXY STRUCTURE AND MODE OF STAR FORMATION IN THE SFR–MASS PLANE FROM z ∼ 2.5 TO z ∼ 0.1 , 2011, 1107.0317.
[23] O. Fèvre,et al. The evolution of the mass-size relation for early type galaxies from z 1 to the present: dependence on environment, mass-range and detailed morphology , 2012, 1207.5793.
[24] J. Starck,et al. The reversal of the star formation-density relation in the distant universe , 2007, astro-ph/0703653.
[25] S. Ravindranath,et al. CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.
[26] Santiago,et al. A CATALOG OF VISUAL-LIKE MORPHOLOGIES IN THE 5 CANDELS FIELDS USING DEEP LEARNING , 2015, 1509.05429.
[27] S. Wuyts,et al. Millimeter Mapping at z ∼ 1: Dust-obscured Bulge Building and Disk Growth , 2018, The Astrophysical Journal.
[28] D. Elbaz,et al. Interpreting the Cosmic Infrared Background: Constraints on the Evolution of the Dust-enshrouded Star Formation Rate , 2001, astro-ph/0103067.
[29] E. Dwek. The Evolution of the Elemental Abundances in the Gas and Dust Phases of the Galaxy , 1997, astro-ph/9707024.
[30] O. Ilbert,et al. NEWLY QUENCHED GALAXIES AS THE CAUSE FOR THE APPARENT EVOLUTION IN AVERAGE SIZE OF THE POPULATION , 2013, 1302.5115.
[31] R. Ellis,et al. CAN MINOR MERGING ACCOUNT FOR THE SIZE GROWTH OF QUIESCENT GALAXIES? NEW RESULTS FROM THE CANDELS SURVEY , 2011, 1110.1637.
[32] C. Carollo,et al. The confinement of star-forming galaxies into a main sequence through episodes of gas compaction, depletion and replenishment , 2015, 1509.02529.
[33] L. Dunne,et al. SCUBA observations of galaxies with metallicity measurements: a new method for determining the relation between submillimetre luminosity and dust mass , 2002, astro-ph/0204519.
[34] L. Hernquist,et al. Massive close pairs measure rapid galaxy assembly in mergers at high redshift , 2016, 1610.01156.
[35] N. R. Tanvir,et al. Galaxy morphology to I = 25 mag in the Hubble Deep Field , 1996 .
[36] Evidence for mature bulges and an inside-out quenching phase 3 billion years after the Big Bang , 2015, Science.
[37] A. Klypin,et al. THE ROLE OF STELLAR FEEDBACK IN THE FORMATION OF GALAXIES , 2007, 0712.3285.
[38] Jr.,et al. The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.
[39] A. Dekel,et al. Formation of elongated galaxies with low masses at high redshift , 2015, 1504.04988.
[40] B. Draine,et al. Infrared Emission from Interstellar Dust. IV. The Silicate-Graphite-PAH Model in the Post-Spitzer Era , 2006, astro-ph/0608003.
[41] A. Fontana,et al. A CRITICAL ASSESSMENT OF PHOTOMETRIC REDSHIFT METHODS: A CANDELS INVESTIGATION , 2013, 1308.5353.
[42] B. Groves,et al. High-resolution panchromatic spectral models of galaxies including photoionization and dust , 2009, 0906.2156.
[43] G. Chabrier. Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.
[44] H. D. S'anchez,et al. Improving galaxy morphologies for SDSS with Deep Learning , 2017, 1711.05744.
[45] Matthew A. Bershady,et al. The asymmetry of galaxies: physical morphology for nearby and high redshift galaxies , 1999 .
[46] C. Carollo,et al. Evolution of density profiles in high-z galaxies: compaction and quenching inside-out , 2015, 1509.00017.
[47] D. Elbaz,et al. A PHYSICAL APPROACH TO THE IDENTIFICATION OF HIGH-Z MERGERS: MORPHOLOGICAL CLASSIFICATION IN THE STELLAR MASS DOMAIN , 2015, 1503.06220.
[48] Mark Dickinson,et al. Size Evolution of the Most Massive Galaxies at 1.7 < z < 3 from GOODS NICMOS Survey Imaging , 2008, 0807.4141.
[49] Daniel Ceverino,et al. FORMATION OF MASSIVE GALAXIES AT HIGH REDSHIFT: COLD STREAMS, CLUMPY DISKS, AND COMPACT SPHEROIDS , 2009, 0901.2458.
[50] P. Jonsson. sunrise: polychromatic dust radiative transfer in arbitrary geometries , 2006, astro-ph/0604118.
[51] Carnegie,et al. CANDELS: THE PROGENITORS OF COMPACT QUIESCENT GALAXIES AT z ∼ 2 , 2012, 1206.5000.
[52] J. Trump,et al. Structural and Star-forming Relations since z ∼ 3: Connecting Compact Star-forming and Quiescent Galaxies , 2015, 1509.00469.
[53] Joel R. Primack,et al. Galaxy merger morphologies and time-scales from simulations of equal-mass gas-rich disc mergers , 2008, 0805.1246.
[54] C. Conselice,et al. Mass assembly and morphological transformations since z ∼ 3 from CANDELS , 2016, 1606.04952.
[55] J. Trump,et al. SUB-KILOPARSEC ALMA IMAGING OF COMPACT STAR-FORMING GALAXIES AT z ∼ 2.5: REVEALING THE FORMATION OF DENSE GALACTIC CORES IN THE PROGENITORS OF COMPACT QUIESCENT GALAXIES , 2016, 1607.01011.
[56] Christopher E. Moody,et al. Diverse structural evolution at z > 1 in cosmologically simulated galaxies , 2014, 1409.1583.
[57] E. Decenciere,et al. Deep learning for galaxy surface brightness profile fitting , 2017, Monthly Notices of the Royal Astronomical Society.
[58] A. Dekel,et al. METALLICITY-DEPENDENT QUENCHING OF STAR FORMATION AT HIGH REDSHIFT IN SMALL GALAXIES , 2011, 1106.0301.