Integration of bulk-quality thin film magneto-optical cerium-doped yttrium iron garnet on silicon nitride photonic substrates.

Cerium substituted yttrium iron garnet (Ce:YIG) films were grown on yttrium iron garnet (YIG) seed layers on silicon nitride films using pulsed laser deposition. Optimal process conditions for forming garnet films on silicon nitride are presented. Bulk or near-bulk magnetic and magneto-optical properties were observed for 160 nm thick Ce:YIG films grown at 640 °C on rapid thermal annealed 40 nm thick YIG grown at 640 °C and 2 Hz pulse rate. The effect of growth temperature and deposition rate on structural, magnetic and magneto-optical properties has been investigated.

[1]  F. Gendron,et al.  Structure and magnetic properties of yttrium–iron–garnet thin films prepared by laser deposition , 2001 .

[2]  B. Stritzker,et al.  Studies on the growth of epitaxial bismuth-substituted iron garnet on gadolinium gallium garnet single crystals by pulsed laser deposition , 2008 .

[3]  Juejun Hu,et al.  Fabrication and characterization of As 2 S 3 / Y 3 Fe 5 O 12 and Y 3 Fe 5 O 12 / SOI strip-loaded waveguides for integrated optical isolator applications , 2010 .

[4]  Bethanie J. H. Stadler,et al.  Integrating yttrium iron garnet onto nongarnet substrates with faster deposition rates and high reliability , 2005 .

[5]  Miguel Levy,et al.  The on-chip integration of magnetooptic waveguide isolators , 2002 .

[6]  Dong Hun Kim,et al.  A nonreciprocal racetrack resonator based on vacuum-annealed magnetooptical cerium-substituted yttrium iron garnet. , 2014, Optics express.

[7]  Tetsuya Mizumoto,et al.  Waveguide Optical Isolators for Integrated Optics , 2012 .

[8]  Y. T. Lee,et al.  Annealing behaviour and crystal structure of RF-sputtered Bi-substituted dysprosium iron-garnet films having excess co-sputtered Bi-oxide content , 2011 .

[9]  P. Paroli,et al.  Magneto-optical devices based on garnet films , 1984 .

[10]  J. Bowers,et al.  Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction , 2012, Light: Science & Applications.

[11]  Toshihiro Shintaku,et al.  Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy , 1997 .

[12]  R. L. Barns,et al.  Band gap versus composition and demonstration of Vegard’s law for In1−xGaxAsyP1−y lattice matched to InP , 1978 .

[13]  Juejun Hu,et al.  Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices , 2011, OPTO.

[14]  Hiroyuki Takeda,et al.  Compact optical one-way waveguide isolators for photonic-band-gap microchips , 2008 .

[15]  A. Tate,et al.  Properties of Ce-Substituted Yttrium Iron Garnet Film Containing Indium Prepared by RF-Sputtering , 1993 .

[16]  T. Suzuki Magnetic and magneto‐optic properties of rapid thermally crystallized garnet films (invited) , 1991 .

[17]  Bethanie J. H. Stadler,et al.  Integration of magneto-optical garnet films by metal-organic chemical vapor deposition , 2002 .

[18]  Huaiwu Zhang,et al.  Effects of off-stoichiometry and density on the magnetic and magneto-optical properties of yttrium iron garnet films by magnetron sputtering method , 2010 .

[19]  Dong Hun Kim,et al.  On-chip optical isolation in monolithically integrated non-reciprocal optical resonators , 2011 .

[20]  M. Abe,et al.  RF-Sputtering of Highly Bi-Substituted Garnet Films on Glass Substrates for Magneto-Optic Memory , 1985, IEEE Translation Journal on Magnetics in Japan.

[21]  C. Burrus,et al.  Silicon-Germanium multi-quantum well photodetectors in the near infrared. , 2012, Optics express.

[22]  D.A.B. Miller,et al.  Rationale and challenges for optical interconnects to electronic chips , 2000, Proceedings of the IEEE.

[23]  Mahi R. Singh,et al.  Giant Faraday rotation in Bi(x)Ce(3-x)Fe5O12 epitaxial garnet films. , 2012, Optics express.

[24]  T. Soma,et al.  Thermal expansion coefficient of GaAs and InP , 1982 .

[25]  Z. Huaiwu,et al.  Effect of Post-Annealing on the Magnetic Properties of Bi:YIG Film by RF Magnetron Sputtering on Si Substrates , 2007, IEEE Transactions on Magnetics.

[26]  G. Zaharchuk,et al.  Magnetic and magneto-optical properties and crystallization kinetics of rapid-thermally crystallized Bi-substituted garnet films , 1990, International Conference on Magnetics.

[27]  J. Bowers,et al.  Silicon ring isolators with bonded nonreciprocal magneto-optic garnets. , 2011, Optics express.

[28]  Min Huang,et al.  Liquid phase epitaxy growth of bismuth-substituted yttrium iron garnet thin films for magneto-optical applications , 2004 .

[29]  P. Munroe,et al.  Microstructural characterization of sputtered garnet materials and all-garnet magnetic heterostructures: establishing the technology for magnetic photonic crystal fabrication , 2009 .

[30]  Laura M. Lechuga,et al.  Magneto-optical phase modulation in integrated Mach–Zehnder interferometric sensors , 2007 .

[31]  M. Huang,et al.  Growth and characterization of cerium-substituted yttrium iron garnet single crystals for magneto-optical applications , 2002 .

[32]  J. Michel,et al.  Ge-on-Si laser operating at room temperature. , 2010, Optics letters.

[33]  S. Geller,et al.  Magnetic and Crystallographic Properties of Substituted Yttrium-Iron Garnet, 3 Y 2 O 3 · x M 2 O 3 · ( 5 − x ) Fe 2 O 3 , 1958 .

[34]  C. Ross,et al.  Magneto-optical properties of cerium substituted yttrium iron garnet films with reduced thermal budget for monolithic photonic integrated circuits. , 2012, Optics express.

[35]  C. Ross,et al.  Vacuum annealed cerium-substituted yttrium iron garnet films on non-garnet substrates for integrated optical circuits , 2013 .

[36]  Juejun Hu,et al.  Fabrication and characterization of As2S3/Y3Fe5O12 and Y3Fe5O12/SOI strip-loaded waveguides for integrated optical isolator applications , 2010, OPTO.