Accelerated single cell seeding in relapsed multiple myeloma

[1]  Nuno A. Fonseca,et al.  Patterns of somatic structural variation in human cancer genomes , 2020, Nature.

[2]  Andrew J. Dunford,et al.  Genomic Profiling of Smoldering Multiple Myeloma Identifies Patients at a High Risk of Disease Progression. , 2019, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[3]  R. Siebert,et al.  Timing the initiation of multiple myeloma , 2019, Nature Communications.

[4]  P. Campbell,et al.  Revealing the impact of recurrent and rare structural variants in multiple myeloma , 2019, bioRxiv.

[5]  G. Morgan,et al.  Role of AID in the temporal pattern of acquisition of driver mutations in multiple myeloma , 2019, Leukemia.

[6]  N. Bolli,et al.  Moving From Cancer Burden to Cancer Genomics for Smoldering Myeloma: A Review. , 2019, JAMA oncology.

[7]  Martin L. Miller,et al.  Multi-site clonality analyses uncovers pervasive subclonal heterogeneity and branching evolution across melanoma metastases , 2019 .

[8]  P. Campbell,et al.  Revealing the Impact of Recurrent and Rare Structural Variations in Multiple Myeloma , 2019, Blood.

[9]  Chelsea L. Michael,et al.  Cancer biology as revealed by the research autopsy , 2019, Nature Reviews Cancer.

[10]  Romina Royo,et al.  A practical guide for mutational signature analysis in hematological malignancies , 2019, Nature Communications.

[11]  A. Gonzalez-Perez,et al.  The mutational footprints of cancer therapies , 2019, bioRxiv.

[12]  Caleb K. Stein,et al.  MYC dysregulation in the progression of multiple myeloma , 2019, Leukemia.

[13]  D. Auclair,et al.  Multiple myeloma immunoglobulin lambda translocations portend poor prognosis , 2019, Nature Communications.

[14]  S. Morganella,et al.  A Compendium of Mutational Signatures of Environmental Agents , 2019, Cell.

[15]  G. Morgan,et al.  Clonal evolution in myeloma: the impact of maintenance lenalidomide and depth of response on the genetics and sub-clonal structure of relapsed disease in uniformly treated newly diagnosed patients , 2019, Haematologica.

[16]  Ville Mustonen,et al.  The repertoire of mutational signatures in human cancer , 2018, Nature.

[17]  M. Stratton,et al.  Genomic evidence supports a clonal diaspora model for metastases of esophageal adenocarcinoma , 2018, bioRxiv.

[18]  P. Campbell,et al.  Genomic patterns of progression in smoldering multiple myeloma , 2018, Nature Communications.

[19]  P. Campbell,et al.  Genomic landscape and chronological reconstruction of driver events in multiple myeloma , 2018, Nature Communications.

[20]  P. A. Futreal,et al.  Timing the Landmark Events in the Evolution of Clear Cell Renal Cell Cancer: TRACERx Renal , 2018, Cell.

[21]  Mi Ni Huang,et al.  In-depth characterization of the cisplatin mutational signature in human cell lines and in esophageal and liver tumors , 2017, bioRxiv.

[22]  E. Pinatel,et al.  Biological and prognostic impact of APOBEC-induced mutations in the spectrum of plasma cell dyscrasias and multiple myeloma cell lines , 2017, Leukemia.

[23]  G. Ha,et al.  Next Generation Sequencing Identifies Smoldering Multiple Myeloma Patients with a High Risk of Disease Progression , 2017 .

[24]  Caleb K. Stein,et al.  Spatial genomic heterogeneity in multiple myeloma revealed by multi-region sequencing , 2017, Nature Communications.

[25]  U. Jaeger Hot therapy for cold agglutinin disease. , 2017, Blood.

[26]  D. Landau,et al.  Genomic complexity of multiple myeloma and its clinical implications , 2017, Nature Reviews Clinical Oncology.

[27]  David Jones,et al.  cgpCaVEManWrapper: Simple Execution of CaVEMan in Order to Detect Somatic Single Nucleotide Variants in NGS Data , 2016, Current protocols in bioinformatics.

[28]  V. Seshan,et al.  FACETS: allele-specific copy number and clonal heterogeneity analysis tool for high-throughput DNA sequencing , 2016, Nucleic acids research.

[29]  David C. Jones,et al.  Landscape of somatic mutations in 560 breast cancer whole genome sequences , 2016, Nature.

[30]  Keiran M Raine,et al.  cgpPindel: Identifying Somatically Acquired Insertion and Deletion Events from Paired End Sequencing , 2015, Current protocols in bioinformatics.

[31]  M. Stratton,et al.  Clock-like mutational processes in human somatic cells , 2015, Nature Genetics.

[32]  S. Rajkumar,et al.  Smoldering multiple myeloma. , 2015, Blood.

[33]  N. Munshi,et al.  Genetics of multiple myeloma: another heterogeneity level? , 2015, Blood.

[34]  Gordon Cook,et al.  APOBEC family mutational signatures are associated with poor prognosis translocations in multiple myeloma , 2014, Nature Communications.

[35]  Hans Erik Johnsen,et al.  International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. , 2014, The Lancet. Oncology.

[36]  G. Parmigiani,et al.  Heterogeneity of genomic evolution and mutational profiles in multiple myeloma , 2014, Nature Communications.

[37]  A. McKenna,et al.  Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. , 2014, Cancer cell.

[38]  Lisa J. Murray,et al.  Intraclonal heterogeneity is a critical early event in the development of myeloma and precedes the development of clinical symptoms , 2013, Leukemia.

[39]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[40]  J. Korbel,et al.  Criteria for Inference of Chromothripsis in Cancer Genomes , 2013, Cell.

[41]  A. Børresen-Dale,et al.  The Life History of 21 Breast Cancers , 2012, Cell.

[42]  G. Morgan,et al.  The genetic architecture of multiple myeloma , 2012, Nature Reviews Cancer.

[43]  Trevor J Pugh,et al.  Initial genome sequencing and analysis of multiple myeloma , 2011, Nature.

[44]  Robert C. Wolpert,et al.  A Review of the , 1985 .