Effects of tilt angle between laser nozzle and substrate on bead morphology in multi-axis laser cladding

[1]  Bo Song,et al.  A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends , 2019, Journal of Materials Science & Technology.

[2]  Yusheng Shi,et al.  Effects of annealing on the microstructure and mechanical properties of selective laser melted AlSi7Mg alloy , 2019, Materials Science and Engineering: A.

[3]  Aitzol Lamikiz Mentxaka,et al.  OPTIMIZACIÓN DE LA EFICIENCIA DEL PROCESO DE APORTE POR LÁSER DE RECUBRIMIENTOS DE ALTA DUREZA MEDIANTE EL ESTUDIO DE DIFERENTES TIPOS DE BOQUILLAS COAXIALES , 2018 .

[4]  Ying Chen,et al.  Research on trajectory planning of complex curved surface parts by laser cladding remanufacturing , 2018 .

[5]  T. Yuan,et al.  Selective laser melting of a novel Sc and Zr modified Al-6.2 Mg alloy: Processing, microstructure, and properties , 2017 .

[6]  Ming Cong,et al.  CAD-based automatic path generation and optimization for laser cladding robot in additive manufacturing , 2017, The International Journal of Advanced Manufacturing Technology.

[7]  Jianjun Shi,et al.  The influence of the substrate-inclined angle on the section size of laser cladding layers based on robot with the inside-beam powder feeding , 2017 .

[8]  Wan-Sik Woo,et al.  Remanufacturing: Trends and issues , 2017, International Journal of Precision Engineering and Manufacturing-Green Technology.

[9]  Radovan Kovacevic,et al.  Laser cladding of 420 stainless steel with molybdenum on mild steel A36 by a high power direct diode laser , 2016 .

[10]  Jingbin Hao,et al.  Microstructural evolution and bonding characteristic in multi-layer laser cladding of NiCoCr alloy on compacted graphite cast iron , 2016 .

[11]  Zengxi Pan,et al.  Bead modelling and implementation of adaptive MAT path in wire and arc additive manufacturing , 2016 .

[12]  R. Urbanic,et al.  Using Predictive Modeling and Classification Methods for Single and Overlapping Bead Laser Cladding to Understand Bead Geometry to Process Parameter Relationships , 2016 .

[13]  A. Mertens,et al.  Laser cladding as repair technology for Ti–6Al–4V alloy: Influence of building strategy on microstructure and hardness , 2015 .

[14]  N. Shamsaei,et al.  An overview of Direct Laser Deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics , 2015 .

[15]  Wenyi Yan,et al.  Experimental characterization of laser cladding of CPM 9V on H13 tool steel for die repair applications , 2015 .

[16]  Fritz Klocke,et al.  Laser path calculation method on triangulated mesh for repair process on turbine parts , 2015, Comput. Aided Des..

[17]  A. Salminen,et al.  Effect of process parameters in laser cladding on substrate melted areas and the substrate melted shape , 2015 .

[18]  Yung C. Shin,et al.  Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis , 2014 .

[19]  P. Michaleris Modeling metal deposition in heat transfer analyses of additive manufacturing processes , 2014 .

[20]  Durmus Karayel,et al.  Modeling and Analysis of the Weld Bead Geometry in Submerged Arc Welding by Using Adaptive Neurofuzzy Inference System , 2013 .

[21]  L. M. Kukreja,et al.  Laser rapid manufacturing on vertical surfaces: Analytical and experimental studies , 2013 .

[22]  Aitzol Lamikiz,et al.  Evaluation of the mechanical properties of Inconel 718 components built by laser cladding , 2011 .

[23]  A. Khajepour,et al.  Temporal development of melt-pool morphology and clad geometry in laser powder deposition , 2011 .

[24]  A. Khajepour,et al.  Effect of laser cladding process parameters on clad quality and in-situ formed microstructure of Fe-TiC composite coatings , 2010 .

[25]  R. Fabbro,et al.  Analytical and numerical modelling of the direct metal deposition laser process , 2008 .

[26]  Sergio D. Felicelli,et al.  Process Modeling in Laser Deposition of Multilayer SS410 Steel , 2007 .

[27]  Amir Khajepour,et al.  Prediction of melt pool depth and dilution in laser powder deposition , 2006 .

[28]  J. Mei,et al.  Influence of position and laser power on thermal history and microstructure of direct laser fabricated Ti–6Al–4V samples , 2005 .

[29]  Yun Tian,et al.  Research progress on laser surface modification of titanium alloys , 2005 .

[30]  Frank W. Liou,et al.  Numerical investigation of the influence of laser beam mode on melt pool , 2004 .

[31]  E. Toyserkani,et al.  3-D finite element modeling of laser cladding by powder injection: effects of laser pulse shaping on the process , 2004 .

[32]  X. Qin,et al.  Geometry modeling of single track cladding deposited by high power diode laser with rectangular beam spot , 2018 .

[33]  S. Kaierle,et al.  Influence of Laser Power on the Shape of Single Tracks in Scanner Based Laser Wire Cladding , 2016 .

[34]  Kush Aggarwal,et al.  Analysis of Laser Cladding Bead Morphology for Developing Additive Manufacturing Travel Paths , 2014 .

[35]  Rui M. Vilar,et al.  Laser cladding , 2003, Advanced Laser Technologies.