Local laws and rigidity for Coulomb gases at any temperature

We study Coulomb gases in any dimension $d \geq 2$ and in a broad temperature regime. We prove local laws on the energy, separation and number of points down to the microscopic scale. These yield the existence of limiting point processes generalizing the Ginibre point process for arbitrary temperature and dimension. The local laws come together with a quantitative expansion of the free energy with a new explicit error rate in the case of a uniform background density. These estimates have explicit temperature dependence, allowing to treat regimes of very large or very small temperature, and exhibit a new minimal lengthscale for rigidity depending on the temperature. They apply as well to energy minimizers (formally zero temperature). The method is based on a bootstrap on scales and reveals the additivity of the energy modulo surface terms, via the introduction of subadditive and superadditive approximate energies.

[1]  A. Guionnet,et al.  Asymptotic Expansion of β Matrix Models in the One-cut Regime , 2011, Communications in Mathematical Physics.

[2]  R. Laughlin Elementary Theory: the Incompressible Quantum Fluid , 1990 .

[3]  Yvan Alain Velenik,et al.  Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction , 2017 .

[4]  Mircea Petrache,et al.  Equidistribution of Jellium Energy for Coulomb and Riesz Interactions , 2016, 1609.03849.

[5]  H. Yau,et al.  Bulk universality of general β-ensembles with non-convex potential , 2012, 1201.2283.

[6]  N. Makarov,et al.  Fluctuations of eigenvalues of random normal matrices , 2008, 0807.0375.

[7]  Matthias Erbar,et al.  The One‐Dimensional Log‐Gas Free Energy Has a Unique Minimizer , 2018, Communications on Pure and Applied Mathematics.

[8]  Ph. A. Martin Sum rules in charged fluids , 1988 .

[9]  O. Zeitouni,et al.  Large Deviations for the Two-Dimensional Two-Component Plasma , 2015, 1510.01955.

[10]  H. Yau,et al.  Local Density for Two-Dimensional One-Component Plasma , 2015, 1510.02074.

[11]  H. Yau,et al.  Universality of general β -ensembles , 2011 .

[12]  E. Lieb,et al.  Improved Lieb-Oxford exchange-correlation inequality with gradient correction , 2014, 1408.3358.

[13]  A Note on the Eigenvalue Density of Random Matrices , 1998, math-ph/9804006.

[14]  H. Georgii,et al.  Large deviations and the maximum entropy principle for marked point random fields , 1993 .

[15]  QUANTITATIVE NORMAL APPROXIMATION OF LINEAR STATISTICS OF β-ENSEMBLES BY GAULTIER LAMBERT1, , 2018 .

[16]  Sylvia Serfaty,et al.  Renormalized energy equidistribution and local charge balance in 2D Coulomb systems , 2013, 1307.3363.

[17]  Mean field limit for Coulomb-type flows , 2018, 1803.08345.

[18]  J. Ginibre Statistical Ensembles of Complex, Quaternion, and Real Matrices , 1965 .

[19]  J. Yngvason,et al.  Quantum Hall Phases and Plasma Analogy in Rotating Trapped Bose Gases , 2013, Journal of Statistical Physics.

[20]  B. Eynard,et al.  Random matrices. , 2015, 1510.04430.

[21]  Mesoscopic central limit theorem for general β-ensembles , 2017 .

[22]  Classical Coulomb Systems:Screening and Correlations Revisited , 1995, cond-mat/9503109.

[23]  Barry Simon,et al.  The statistical mechanics of lattice gases , 1993 .

[24]  K. Johansson On fluctuations of eigenvalues of random Hermitian matrices , 1998 .

[25]  David Garc'ia-Zelada Concentration for Coulomb gases on compact manifolds , 2018, Electronic Communications in Probability.

[26]  A. Guionnet,et al.  About the stationary states of vortex systems , 1999 .

[27]  F. Dyson Statistical Theory of the Energy Levels of Complex Systems. I , 1962 .

[28]  S. Armstrong,et al.  Mesoscopic Higher Regularity and Subadditivity in Elliptic Homogenization , 2015, 1507.06935.

[29]  S. Serfaty,et al.  NEXT ORDER ASYMPTOTICS AND RENORMALIZED ENERGY FOR RIESZ INTERACTIONS , 2014, Journal of the Institute of Mathematics of Jussieu.

[30]  A. Guionnet,et al.  Asymptotic expansion of β matrix models in the multi-cut regime , 2013 .

[31]  P. Forrester Log-Gases and Random Matrices , 2010 .

[32]  S. Serfaty,et al.  Higher‐Dimensional Coulomb Gases and Renormalized Energy Functionals , 2013, 1307.2805.

[33]  G. Manificat,et al.  Large charge fluctuations in classical Coulomb systems , 1993 .

[34]  S. Ganguly,et al.  Ground states and hyperuniformity of the hierarchical Coulomb gas in all dimensions , 2019, Probability Theory and Related Fields.

[35]  M. L. Mehta,et al.  STATISTICAL THEORY OF THE ENERGY LEVELS OF COMPLEX SYSTEMS. PART IV , 1963 .

[36]  Salvatore Torquato,et al.  Hyperuniformity and its generalizations. , 2016, Physical review. E.

[37]  Thomas Leblé Logarithmic, Coulomb and Riesz Energy of Point Processes , 2015, 1509.05253.

[38]  E. Lieb,et al.  The thermodynamic limit for jellium , 1975 .

[39]  Sylvia Serfaty,et al.  Large deviation principle for empirical fields of Log and Riesz gases , 2015, Inventiones mathematicae.

[40]  H. Yau,et al.  The two-dimensional Coulomb plasma: quasi-free approximation and central limit theorem , 2016, Advances in Theoretical and Mathematical Physics.

[41]  Ph. A. Martin,et al.  Equilibrium properties of classical systems with long-range forces. BBGKY equation, neutrality, screening, and sum rules , 1980 .

[42]  M. Kiessling Statistical mechanics of classical particles with logarithmic interactions , 1993 .

[43]  Sylvia Serfaty,et al.  Coulomb Gases and Ginzburg - Landau Vortices , 2014, 1403.6860.

[44]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[45]  S. Serfaty Gaussian Fluctuations and Free Energy Expansion for 2D and 3D Coulomb Gases at Any Temperature. , 2020 .

[46]  S. Serfaty,et al.  Fluctuations of Two Dimensional Coulomb Gases , 2016, 1609.08088.

[47]  E. Lieb,et al.  Floating Wigner crystal with no boundary charge fluctuations , 2019, Physical Review B.

[48]  Herbert Spohn,et al.  Statistical mechanics of the isothermal lane-emden equation , 1982 .

[49]  Otto Frostman Potentiel d'équilibre et capacité des ensembles : Avec quelques applications a la théorie des fonctions , 1935 .

[50]  CNRS,et al.  Statistical mechanics and dynamics of solvable models with long-range interactions , 2009, 0907.0323.

[51]  Beurling-Landau densities of weighted Fekete sets and correlation kernel estimates , 2011, 1110.0284.

[52]  S. Armstrong,et al.  Quantitative Stochastic Homogenization and Large-Scale Regularity , 2017, Grundlehren der mathematischen Wissenschaften.

[53]  S. Serfaty,et al.  1D log gases and the renormalized energy: crystallization at vanishing temperature , 2013, 1303.2968.

[54]  Sumathi Rao,et al.  FRACTIONAL QUANTUM HALL EFFECT , 2021, Structural Aspects of Quantum Field Theory and Noncommutative Geometry.

[55]  Emanuele Caglioti,et al.  A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description , 1992 .

[56]  E. Lieb,et al.  The constitution of matter: Existence of thermodynamics for systems composed of electrons and nuclei , 1972 .

[57]  Mesoscopic central limit theorem for general $\beta$-ensembles , 2016, 1605.05206.

[58]  D. Merlini,et al.  On the ν-dimensional one-component classical plasma: The thermodynamic limit problem revisited , 1976 .

[59]  M. Shcherbina Fluctuations of Linear Eigenvalue Statistics of β Matrix Models in the Multi-cut Regime , 2012, 1205.7062.

[60]  Charles K. Smart,et al.  Quantitative stochastic homogenization of convex integral functionals , 2014, 1406.0996.

[61]  Sh. М. Shakirov Exact solution for mean energy of 2d Dyson gas at = 1 , 2009, 0912.5520.

[62]  L. Saloff-Coste,et al.  Neumann and Dirichlet Heat Kernels in Inner Uniform Domains , 2011, Astérisque.

[63]  Sylvia Serfaty,et al.  Mean Field Limit for Coulomb Flows , 2018 .

[64]  S. Girvin Introduction to the Fractional Quantum Hall Effect , 2005 .

[65]  S. Serfaty,et al.  2D Coulomb Gases and the Renormalized Energy , 2012, 1201.3503.

[66]  Thomas Leblé Local microscopic behavior for 2D Coulomb gases , 2015, 1510.01506.

[67]  E. Saff,et al.  Logarithmic Potentials with External Fields , 1997 .

[68]  S. Serfaty,et al.  CLT for Fluctuations of β -ensembles with general potential , 2017 .

[69]  David Garc'ia-Zelada A large deviation principle for empirical measures on Polish spaces: Application to singular Gibbs measures on manifolds , 2017, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[70]  Giovanni Alberti,et al.  Uniform energy distribution for an isoperimetric problem with long-range interactions , 2008 .

[71]  B. Rider,et al.  The Noise in the Circular Law and the Gaussian Free Field , 2006, math/0606663.

[72]  H. Yau,et al.  Universality of general $\beta$-ensembles , 2011, 1104.2272.

[73]  Djalil CHAFAÏ,et al.  Concentration for Coulomb gases and Coulomb transport inequalities , 2016, Journal of Functional Analysis.

[74]  A. Alastuey,et al.  On the classical two-dimensional one-component Coulomb plasma , 1981 .

[75]  Sylvia Serfaty,et al.  From the Ginzburg-Landau Model to Vortex Lattice Problems , 2010, 1011.4617.

[76]  P. Forrester,et al.  Exact and Asymptotic Features of the Edge Density Profile for the One Component Plasma in Two Dimensions , 2013, 1310.3130.