Local laws and rigidity for Coulomb gases at any temperature
暂无分享,去创建一个
[1] A. Guionnet,et al. Asymptotic Expansion of β Matrix Models in the One-cut Regime , 2011, Communications in Mathematical Physics.
[2] R. Laughlin. Elementary Theory: the Incompressible Quantum Fluid , 1990 .
[3] Yvan Alain Velenik,et al. Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction , 2017 .
[4] Mircea Petrache,et al. Equidistribution of Jellium Energy for Coulomb and Riesz Interactions , 2016, 1609.03849.
[5] H. Yau,et al. Bulk universality of general β-ensembles with non-convex potential , 2012, 1201.2283.
[6] N. Makarov,et al. Fluctuations of eigenvalues of random normal matrices , 2008, 0807.0375.
[7] Matthias Erbar,et al. The One‐Dimensional Log‐Gas Free Energy Has a Unique Minimizer , 2018, Communications on Pure and Applied Mathematics.
[8] Ph. A. Martin. Sum rules in charged fluids , 1988 .
[9] O. Zeitouni,et al. Large Deviations for the Two-Dimensional Two-Component Plasma , 2015, 1510.01955.
[10] H. Yau,et al. Local Density for Two-Dimensional One-Component Plasma , 2015, 1510.02074.
[11] H. Yau,et al. Universality of general β -ensembles , 2011 .
[12] E. Lieb,et al. Improved Lieb-Oxford exchange-correlation inequality with gradient correction , 2014, 1408.3358.
[13] A Note on the Eigenvalue Density of Random Matrices , 1998, math-ph/9804006.
[14] H. Georgii,et al. Large deviations and the maximum entropy principle for marked point random fields , 1993 .
[15] QUANTITATIVE NORMAL APPROXIMATION OF LINEAR STATISTICS OF β-ENSEMBLES BY GAULTIER LAMBERT1, , 2018 .
[16] Sylvia Serfaty,et al. Renormalized energy equidistribution and local charge balance in 2D Coulomb systems , 2013, 1307.3363.
[17] Mean field limit for Coulomb-type flows , 2018, 1803.08345.
[18] J. Ginibre. Statistical Ensembles of Complex, Quaternion, and Real Matrices , 1965 .
[19] J. Yngvason,et al. Quantum Hall Phases and Plasma Analogy in Rotating Trapped Bose Gases , 2013, Journal of Statistical Physics.
[20] B. Eynard,et al. Random matrices. , 2015, 1510.04430.
[21] Mesoscopic central limit theorem for general β-ensembles , 2017 .
[22] Classical Coulomb Systems:Screening and Correlations Revisited , 1995, cond-mat/9503109.
[23] Barry Simon,et al. The statistical mechanics of lattice gases , 1993 .
[24] K. Johansson. On fluctuations of eigenvalues of random Hermitian matrices , 1998 .
[25] David Garc'ia-Zelada. Concentration for Coulomb gases on compact manifolds , 2018, Electronic Communications in Probability.
[26] A. Guionnet,et al. About the stationary states of vortex systems , 1999 .
[27] F. Dyson. Statistical Theory of the Energy Levels of Complex Systems. I , 1962 .
[28] S. Armstrong,et al. Mesoscopic Higher Regularity and Subadditivity in Elliptic Homogenization , 2015, 1507.06935.
[29] S. Serfaty,et al. NEXT ORDER ASYMPTOTICS AND RENORMALIZED ENERGY FOR RIESZ INTERACTIONS , 2014, Journal of the Institute of Mathematics of Jussieu.
[30] A. Guionnet,et al. Asymptotic expansion of β matrix models in the multi-cut regime , 2013 .
[31] P. Forrester. Log-Gases and Random Matrices , 2010 .
[32] S. Serfaty,et al. Higher‐Dimensional Coulomb Gases and Renormalized Energy Functionals , 2013, 1307.2805.
[33] G. Manificat,et al. Large charge fluctuations in classical Coulomb systems , 1993 .
[34] S. Ganguly,et al. Ground states and hyperuniformity of the hierarchical Coulomb gas in all dimensions , 2019, Probability Theory and Related Fields.
[35] M. L. Mehta,et al. STATISTICAL THEORY OF THE ENERGY LEVELS OF COMPLEX SYSTEMS. PART IV , 1963 .
[36] Salvatore Torquato,et al. Hyperuniformity and its generalizations. , 2016, Physical review. E.
[37] Thomas Leblé. Logarithmic, Coulomb and Riesz Energy of Point Processes , 2015, 1509.05253.
[38] E. Lieb,et al. The thermodynamic limit for jellium , 1975 .
[39] Sylvia Serfaty,et al. Large deviation principle for empirical fields of Log and Riesz gases , 2015, Inventiones mathematicae.
[40] H. Yau,et al. The two-dimensional Coulomb plasma: quasi-free approximation and central limit theorem , 2016, Advances in Theoretical and Mathematical Physics.
[41] Ph. A. Martin,et al. Equilibrium properties of classical systems with long-range forces. BBGKY equation, neutrality, screening, and sum rules , 1980 .
[42] M. Kiessling. Statistical mechanics of classical particles with logarithmic interactions , 1993 .
[43] Sylvia Serfaty,et al. Coulomb Gases and Ginzburg - Landau Vortices , 2014, 1403.6860.
[44] M. Stephanov,et al. Random Matrices , 2005, hep-ph/0509286.
[45] S. Serfaty. Gaussian Fluctuations and Free Energy Expansion for 2D and 3D Coulomb Gases at Any Temperature. , 2020 .
[46] S. Serfaty,et al. Fluctuations of Two Dimensional Coulomb Gases , 2016, 1609.08088.
[47] E. Lieb,et al. Floating Wigner crystal with no boundary charge fluctuations , 2019, Physical Review B.
[48] Herbert Spohn,et al. Statistical mechanics of the isothermal lane-emden equation , 1982 .
[49] Otto Frostman. Potentiel d'équilibre et capacité des ensembles : Avec quelques applications a la théorie des fonctions , 1935 .
[50] CNRS,et al. Statistical mechanics and dynamics of solvable models with long-range interactions , 2009, 0907.0323.
[51] Beurling-Landau densities of weighted Fekete sets and correlation kernel estimates , 2011, 1110.0284.
[52] S. Armstrong,et al. Quantitative Stochastic Homogenization and Large-Scale Regularity , 2017, Grundlehren der mathematischen Wissenschaften.
[53] S. Serfaty,et al. 1D log gases and the renormalized energy: crystallization at vanishing temperature , 2013, 1303.2968.
[54] Sumathi Rao,et al. FRACTIONAL QUANTUM HALL EFFECT , 2021, Structural Aspects of Quantum Field Theory and Noncommutative Geometry.
[55] Emanuele Caglioti,et al. A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description , 1992 .
[56] E. Lieb,et al. The constitution of matter: Existence of thermodynamics for systems composed of electrons and nuclei , 1972 .
[57] Mesoscopic central limit theorem for general $\beta$-ensembles , 2016, 1605.05206.
[58] D. Merlini,et al. On the ν-dimensional one-component classical plasma: The thermodynamic limit problem revisited , 1976 .
[59] M. Shcherbina. Fluctuations of Linear Eigenvalue Statistics of β Matrix Models in the Multi-cut Regime , 2012, 1205.7062.
[60] Charles K. Smart,et al. Quantitative stochastic homogenization of convex integral functionals , 2014, 1406.0996.
[61] Sh. М. Shakirov. Exact solution for mean energy of 2d Dyson gas at = 1 , 2009, 0912.5520.
[62] L. Saloff-Coste,et al. Neumann and Dirichlet Heat Kernels in Inner Uniform Domains , 2011, Astérisque.
[63] Sylvia Serfaty,et al. Mean Field Limit for Coulomb Flows , 2018 .
[64] S. Girvin. Introduction to the Fractional Quantum Hall Effect , 2005 .
[65] S. Serfaty,et al. 2D Coulomb Gases and the Renormalized Energy , 2012, 1201.3503.
[66] Thomas Leblé. Local microscopic behavior for 2D Coulomb gases , 2015, 1510.01506.
[67] E. Saff,et al. Logarithmic Potentials with External Fields , 1997 .
[68] S. Serfaty,et al. CLT for Fluctuations of β -ensembles with general potential , 2017 .
[69] David Garc'ia-Zelada. A large deviation principle for empirical measures on Polish spaces: Application to singular Gibbs measures on manifolds , 2017, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.
[70] Giovanni Alberti,et al. Uniform energy distribution for an isoperimetric problem with long-range interactions , 2008 .
[71] B. Rider,et al. The Noise in the Circular Law and the Gaussian Free Field , 2006, math/0606663.
[72] H. Yau,et al. Universality of general $\beta$-ensembles , 2011, 1104.2272.
[73] Djalil CHAFAÏ,et al. Concentration for Coulomb gases and Coulomb transport inequalities , 2016, Journal of Functional Analysis.
[74] A. Alastuey,et al. On the classical two-dimensional one-component Coulomb plasma , 1981 .
[75] Sylvia Serfaty,et al. From the Ginzburg-Landau Model to Vortex Lattice Problems , 2010, 1011.4617.
[76] P. Forrester,et al. Exact and Asymptotic Features of the Edge Density Profile for the One Component Plasma in Two Dimensions , 2013, 1310.3130.