Transmission of low-frequency internal sound through pipe walls

Abstract Transmission loss measurements are reported for long steel pipes of circular crosssection, with air inside and out, excited by internal sound. At low frequencies (wavelength greater than the pipe diameter), most of the radiated sound is accounted for by pipe bending waves. In order to approach the much higher transmission loss predicted for pure breathing motion of the pipe, bending waves must be suppressed; this has been achieved for a straight pipe by careful isolation. A sharp 90 bend in the pipe is shown to cause significant bending-wave excitation when plane waves are incident on the bend.