Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites

Ambient-unstable hole transporters and expensive and complicated noble metal electrode deposition are incompatible with the large scale and low-cost production of perovskite solar cells and thus would hamper their commercialization. Herein we report a new modality of perovskite solar cells that do away with the use of conventional hole transporters by directly clamping a selective hole extraction electrode made of candle soot and a deliberately engineered perovskite photoanode. The key soot/perovskite interface, which promotes hole extraction and electron blocking by forming a Schottky junction, was established seamlessly by pre-wetting and reaction embedding the carbon particles. Femtosecond time-resolved photoluminescence revealed a high hole extraction rate at 1.92 ns−1. We have now achieved 11.02% efficiency, making an important step towards roll-to-roll production of perovskite solar cells.

[1]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[2]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[3]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[4]  J. Teuscher,et al.  Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells , 2014, Nature Photonics.

[5]  Jieshan Qiu,et al.  High performance hybrid solar cells sensitized by organolead halide perovskites , 2013 .

[6]  Jeffrey A. Christians,et al.  An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. , 2014, Journal of the American Chemical Society.

[7]  Yossi Rosenwaks,et al.  Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor). , 2014, Nano letters.

[8]  Yongcai Qiu,et al.  All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays. , 2013, Nanoscale.

[9]  Konrad Wojciechowski,et al.  Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency , 2014 .

[10]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[11]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[12]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[13]  H. Snaith,et al.  Low-temperature processed meso-superstructured to thin-film perovskite solar cells , 2013 .

[14]  Nripan Mathews,et al.  Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. , 2014, ACS nano.

[15]  He Yan,et al.  Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots. , 2014, Journal of the American Chemical Society.

[16]  Yun‐Hi Kim,et al.  A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic–inorganic hybrid solar cells based on a perovskite , 2014 .

[17]  Henk J. Bolink,et al.  Perovskite solar cells employing organic charge-transport layers , 2013, Nature Photonics.

[18]  Peng Gao,et al.  Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% efficiency. , 2014, Nano letters.

[19]  Qi Chen,et al.  Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. , 2014, ACS nano.

[20]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[21]  Yanhong Luo,et al.  Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High efficiency and junction property , 2014 .

[22]  Mohammad Khaja Nazeeruddin,et al.  Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency , 2014, Nature Communications.

[23]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[24]  Qi Chen,et al.  Planar heterojunction perovskite solar cells via vapor-assisted solution process. , 2014, Journal of the American Chemical Society.

[25]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[26]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[27]  Hui Zhao,et al.  Synthesis and characterization of the hole-conducting silica/polymer nanocomposites and application in solid-state dye-sensitized solar cell. , 2013, ACS applied materials & interfaces.

[28]  Yaoguang Rong,et al.  Hole-Conductor-Free Mesoscopic TiO2/CH3NH3PbI3 Heterojunction Solar Cells Based on Anatase Nanosheets and Carbon Counter Electrodes. , 2014, The journal of physical chemistry letters.

[29]  Gary Hodes,et al.  Perovskite-Based Solar Cells , 2013, Science.

[30]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[31]  Peng Gao,et al.  Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. , 2012, Journal of the American Chemical Society.

[32]  Yaoguang Rong,et al.  Highly ordered mesoporous carbon for mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cell , 2014 .

[33]  Mohammad Khaja Nazeeruddin,et al.  Organohalide lead perovskites for photovoltaic applications , 2014 .

[34]  Yaoguang Rong,et al.  Full Printable Processed Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells with Carbon Counter Electrode , 2013, Scientific Reports.

[35]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[36]  Lioz Etgar,et al.  Depleted hole conductor-free lead halide iodide heterojunction solar cells , 2013 .