An examination of the Galileo NeQuick model: comparison with GPS and JASON TEC

We evaluate the performance of Galileo broadcast NeQuick model by comparing it with GPS broadcast Klobuchar and the original NeQuick2 models. The broadcast coefficients of Galileo NeQuick model are computed from 23 globally distributed tracking stations of the International GNSS Service (IGS), by ingesting the Global Positioning System (GPS)-derived ionospheric total electron content (TEC) into the original NeQuick2 model. The accuracy of the three ionospheric models is evaluated over both the continental and oceanic regions for the year 2013. In continental regions, ionospheric TEC derived from 34 IGS stations is used as references for comparison. In oceanic regions, where the IGS stations are sparse, high-quality vertical TEC sources provided by JASON-1&2 altimeters are used as references. The evaluation results show that in continental regions, GPS broadcast Klobuchar and the original and broadcast NeQuick can mitigate the ionospheric delay by 56.8, 63.3 and 72.4 %, respectively. In oceanic regions, the three models can correct for 51.1, 61.2 and 68.6 % of the ionospheric delay. Galileo broadcast NeQuick model outperforms Klobuchar by 15.6 and 17.5 % over the continental and oceanic regions, respectively, for the test period. The broadcast NeQuick model can provide accurate ionospheric error corrections when Galileo begins full operational capability.

[1]  S. Schaer Mapping and predicting the Earth's ionosphere using the Global Positioning System. , 1999 .

[2]  Ningbo Wang,et al.  Improvement of Klobuchar model for GNSS single-frequency ionospheric delay corrections , 2016 .

[3]  Richard B. Langley,et al.  Ingesting GPS-derived TEC data into the International Reference Ionosphere for single frequency radar altimeter ionospheric delay corrections , 1998 .

[4]  S. M. Radicella,et al.  The improved DGR analytical model of electron density height profile and total electron content in the ionosphere , 1995 .

[5]  René Warnant,et al.  Galileo single frequency ionospheric correction: performances in terms of position , 2012, GPS Solutions.

[6]  Jaume Sanz,et al.  New approaches in global ionospheric determination using ground GPS data , 1999 .

[7]  Norbert Jakowski,et al.  An alternative ionospheric correction model for global navigation satellite systems , 2015, Journal of Geodesy.

[8]  Reinhart Leitinger,et al.  An improved bottomside for the ionospheric electron density, model NeQuick , 2005 .

[9]  Sandro M. Radicella,et al.  An analytical model of the electron density profile in the ionosphere , 1990 .

[10]  Reinhart Leitinger,et al.  Topside electron density in IRI and NeQuick: Features and limitations , 2006 .

[11]  Norbert Jakowski,et al.  Comparative testing of four ionospheric models driven with GPS measurements , 2011 .

[12]  Zishen Li,et al.  Two-step method for the determination of the differential code biases of COMPASS satellites , 2012, Journal of Geodesy.

[13]  Chris Rizos,et al.  The International GNSS Service in a changing landscape of Global Navigation Satellite Systems , 2009 .

[14]  René Warnant,et al.  Ionosphere modelling for Galileo single frequency users: illustration of the combination of the NeQuick model and GNSS data ingestion , 2011 .

[15]  Jianhua Zhou,et al.  Evaluation of COMPASS ionospheric grid , 2014, GPS Solutions.

[16]  Sandro M. Radicella,et al.  A new version of the NeQuick ionosphere electron density model , 2008 .

[17]  Peter Teunissen,et al.  Characterization of multi-GNSS between-receiver differential code biases using zero and short baselines , 2015 .

[18]  Sandro M. Radicella,et al.  A model assisted ionospheric electron density reconstruction method based on vertical TEC data ingestion , 2005 .

[19]  M. Meindl,et al.  GNSS processing at CODE: status report , 2009 .

[20]  A. Somieski,et al.  Evaluation and Comparison of Different Methods of Ionospheric Delay Mitigation for Future Galileo Mass Market Receivers , 2007 .

[21]  R. Grenfell,et al.  Refining the Klobuchar ionospheric coefficients based on GPS observations , 2008, IEEE Transactions on Aerospace and Electronic Systems.

[22]  Peter Steigenberger,et al.  Differential Code Bias Estimation using Multi‐GNSS Observations and Global Ionosphere Maps , 2014 .

[23]  Sandro M. Radicella,et al.  TEC ingestion into NeQuick 2 to model the East African equatorial ionosphere , 2012 .

[24]  J. Sanz,et al.  Ground- and space-based GPS data ingestion into the NeQuick model , 2011 .

[25]  Gang Wang,et al.  Evaluation of COMPASS ionospheric model in GNSS positioning , 2013 .

[26]  J. Klobuchar Ionospheric Effects on GPS , 2009 .

[27]  Manuel Hernández-Pajares,et al.  The ionosphere: effects, GPS modeling and the benefits for space geodetic techniques , 2011 .

[28]  Jaume Sanz,et al.  Performance of different TEC models to provide GPS ionospheric corrections , 2002 .

[29]  Sandro M. Radicella,et al.  Ionospheric models for GNSS single frequency range delay corrections , 2008 .

[30]  D. Bilitza,et al.  International Reference Ionosphere 2007: Improvements and new parameters , 2008 .

[31]  J. Klobuchar Ionospheric Time-Delay Algorithm for Single-Frequency GPS Users , 1987, IEEE Transactions on Aerospace and Electronic Systems.

[32]  Sandro M. Radicella,et al.  Data ingestion into NeQuick 2 , 2011 .

[33]  A. Garcia-Rigo,et al.  The IGS VTEC maps: a reliable source of ionospheric information since 1998 , 2009 .

[34]  Sandro M. Radicella,et al.  The NeQuick model genesis, uses and evolution , 2009 .

[35]  Sandro M. Radicella,et al.  A near‐real‐time model‐assisted ionosphere electron density retrieval method , 2006 .

[36]  Oliver Montenbruck,et al.  Determination of differential code biases with multi-GNSS observations , 2016, Journal of Geodesy.

[37]  Torben Schüler,et al.  GNSS single frequency ionospheric range delay corrections: NeQuick data ingestion technique , 2012 .

[38]  René Warnant,et al.  Assessment of the NeQuick model at mid-latitudes using GNSS TEC and ionosonde data , 2010 .

[39]  René Warnant,et al.  GPS TEC and ITEC from digisonde data compared with NEQUICK model , 2005 .