The extreme sensitivity of Mycobacterium tuberculosis to the front-line antituberculosis drug isoniazid

[1]  J. Musser,et al.  Analysis of the oxyR-ahpC region in isoniazid-resistant and -susceptible Mycobacterium tuberculosis complex organisms recovered from diseased humans and animals in diverse localities , 1997, Antimicrobial agents and chemotherapy.

[2]  S. Dhandayuthapani,et al.  Molecular basis for the exquisite sensitivity of Mycobacterium tuberculosis to isoniazid. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Clifton E. Barry,et al.  Compensatory ahpC Gene Expression in Isoniazid-Resistant Mycobacterium tuberculosis , 1996, Science.

[4]  S. Dhandayuthapani,et al.  Oxidative stress response and its role in sensitivity to isoniazid in mycobacteria: characterization and inducibility of ahpC by peroxides in Mycobacterium smegmatis and lack of expression in M. aurum and M. tuberculosis , 1996, Journal of bacteriology.

[5]  T. Wilson,et al.  ahpC, a gene involved in isoniazid resistance of the Mycobacterium tuberculosis complex , 1996, Molecular microbiology.

[6]  M. Fenton,et al.  Immunopathology of tuberculosis: roles of macrophages and monocytes , 1996, Infection and immunity.

[7]  G. Riccardi,et al.  The katE gene, which encodes the catalase HPII of Mycobacterium avium , 1996, Molecular microbiology.

[8]  G. Bai,et al.  Characterization of the katG and inhA genes of isoniazid-resistant clinical isolates of Mycobacterium tuberculosis , 1995, Antimicrobial agents and chemotherapy.

[9]  J. Musser,et al.  Antimicrobial agent resistance in mycobacteria: molecular genetic insights , 1995, Clinical microbiology reviews.

[10]  P. V. van Helden,et al.  Mutations in katG gene sequences in isoniazid-resistant clinical isolates of Mycobacterium tuberculosis are rare , 1995, Antimicrobial agents and chemotherapy.

[11]  S. Cole,et al.  Mycobacterium tuberculosis is a natural mutant with an inactivated oxidative‐stress regulatory gene:implications for sensitivity to isoniazid , 1995, Molecular microbiology.

[12]  S. Dhandayuthapani,et al.  Green fluorescent protein as a marker for gene expression and cell biology of mycobacterial interactions with macrophages , 1995, Molecular microbiology.

[13]  G. Mahairas,et al.  Disparate responses to oxidative stress in saprophytic and pathogenic mycobacteria. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[14]  P. Schultz,et al.  Studies on the Mechanism of Action of Isoniazid and Ethionamide in the Chemotherapy of Tuberculosis , 1995 .

[15]  D. Rouse,et al.  Molecular mechanisms of isoniazid resistance in Mycobacterium tuberculosis and Mycobacterium bovis , 1995, Infection and immunity.

[16]  J. Sacchettini,et al.  Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis , 1995, Science.

[17]  D. Russell Mycobacterium and Leishmania: stowaways in the endosomal network. , 1995, Trends in cell biology.

[18]  S. Cole,et al.  Missense mutations in the catalase‐peroxidase gene, katG, are associated with isoniazid resistance in Mycobacterium tuberculosis , 1995, Molecular microbiology.

[19]  T. D. Schneider,et al.  Redox-dependent shift of OxyR-DNA contacts along an extended DNA-binding site: A mechanism for differential promoter selection , 1994, Cell.

[20]  G. Church,et al.  Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[21]  S T Cole,et al.  MycDB: an integrated mycobacterial database , 1994, Molecular microbiology.

[22]  E. Davis,et al.  The ins and outs of protein splicing elements , 1994, Molecular microbiology.

[23]  W. Jacobs,et al.  inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. , 1994, Science.

[24]  J. Rosner Susceptibilities of oxyR regulon mutants of Escherichia coli and Salmonella typhimurium to isoniazid , 1993, Antimicrobial Agents and Chemotherapy.

[25]  D. Young,et al.  Molecular mechanisms of isoniazid: a drug at the front line of tuberculosis control. , 1993, Trends in microbiology.

[26]  D. Young,et al.  Transformation with katG restores isoniazid‐sensitivity in Mycobacterium tuberculosis isolates resistant to a range of drug concentrations , 1993, Molecular microbiology.

[27]  S. Cole,et al.  Leprosy, tuberculosis, and the new genetics , 1993, Journal of bacteriology.

[28]  Christopher J. L. Murray,et al.  Tuberculosis: Commentary on a Reemergent Killer , 1992, Science.

[29]  S. Cole,et al.  The catalase—peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis , 1992, Nature.

[30]  C. Abe,et al.  Cloning and expression of the gene for the Avi-3 antigen of Mycobacterium avium and mapping of its epitopes , 1992, Infection and immunity.

[31]  S. Farr,et al.  Oxidative stress responses in Escherichia coli and Salmonella typhimurium. , 1991, Microbiological reviews.

[32]  A. Quémard,et al.  Isoniazid inhibition of mycolic acid synthesis by cell extracts of sensitive and resistant strains of Mycobacterium aurum , 1991, Antimicrobial Agents and Chemotherapy.

[33]  G. Storz,et al.  OxyR, a positive regulator of hydrogen peroxide-inducible genes in Escherichia coli and Salmonella typhimurium, is homologous to a family of bacterial regulatory proteins. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[34]  B. Ames,et al.  An alkyl hydroperoxide reductase from Salmonella typhimurium involved in the defense of DNA against oxidative damage. Purification and properties. , 1989, The Journal of biological chemistry.

[35]  G. Storz,et al.  Spontaneous mutagenesis and oxidative damage to DNA in Salmonella typhimurium. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[36]  B. Ames,et al.  Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium , 1985, Cell.

[37]  B. U. Bowman,et al.  Enzymatic and nonenzymatic superoxide-generating reactions of isoniazid , 1985, Antimicrobial Agents and Chemotherapy.

[38]  B. U. Bowman,et al.  Evidence for the generation of active oxygen by isoniazid treatment of extracts of Mycobacterium tuberculosis H37Ra , 1985, Antimicrobial Agents and Chemotherapy.

[39]  B. U. Bowman,et al.  Peroxidase-mediated oxidation of isoniazid , 1985, Antimicrobial Agents and Chemotherapy.

[40]  M. Weber,et al.  Isoniazid interaction with tyrosine as a possible mode of action of the drug in mycobacteria , 1980, Antimicrobial Agents and Chemotherapy.

[41]  G. Cilento,et al.  Oxidation of isonicotinic acid hydrazide by the peroxidase system. The formation of an excited product. , 1977, Archives of biochemistry and biophysics.

[42]  K. Schaper,et al.  Mode of action and quantitative structure-activity correlations of tuberculostatic drugs of the isonicotinic acid hydrazide type. , 1976, Journal of medicinal chemistry.

[43]  T. Ramakrishnan,et al.  The purification and properties of peroxidase in Mycobacterium tuberculosis H37Rv and its possible role in the mechanism of action of isonicotinic acid hydrazide. , 1975, The Biochemical journal.

[44]  A. G. Moat,et al.  Metabolism of Nicotinamide Adenine Dinucleotide in Human and Bovine Strains of Mycobacterium tuberculosis , 1972, Journal of bacteriology.

[45]  A. Lepeuple,et al.  [Rapid microbiological determination of serum isoniazid]. , 1971, Revue de tuberculose et de pneumologie.

[46]  J. Youatt A review of the action of isoniazid. , 1969, The American review of respiratory disease.

[47]  A. Bekierkunst Nicotinamide-Adenine Dinucleotide in Tubercle Bacilli Exposed to Isoniazid , 1966, Science.

[48]  E. THIEMER-KRUGER Isonicotinic acid hypothesis of the antituberculous action of isoniazid. , 1958, American review of tuberculosis.

[49]  M. L. Cohn,et al.  Some observations on the pathogenicity of isoniazid-resistant variants of tubercle bacilli. , 1953, Science.

[50]  F. Cockerill,et al.  Rapid identification of a point mutation of the Mycobacterium tuberculosis catalase-peroxidase (katG) gene associated with isoniazid resistance. , 1995, The Journal of infectious diseases.

[51]  G. Rook,et al.  Pathogenesis of Pulmonary Tuberculosis: an Interplay of Tissue-Damaging and Macrophage-Activating Immune Responses—Dual Mechanisms That Control Bacillary Multiplication , 1994 .

[52]  M. Schell Molecular biology of the LysR family of transcriptional regulators. , 1993, Annual review of microbiology.

[53]  S. Cole,et al.  Isolation and characterization of isoniazid-resistant mutants of Mycobacterium smegmatis and M. aurum. , 1992, Research in microbiology.

[54]  W. Jacobs,et al.  Genetic systems for mycobacteria. , 1991, Methods in enzymology.

[55]  E. Long The chemistry and chemotherapy of tuberculosis , 1958 .