High-Resolution Copy Number Patterns From Clinically Relevant FFPE Material

[1]  D. Bishop,et al.  β-Catenin–mediated immune evasion pathway frequently operates in primary cutaneous melanomas , 2018, The Journal of clinical investigation.

[2]  Peter W. Laird,et al.  Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer , 2018, Cell.

[3]  J. Tran van Nhieu,et al.  DNA degrades during storage in formalin-fixed and paraffin-embedded tissue blocks , 2017, Virchows Archiv.

[4]  D. Jablons,et al.  Systematic comparison of two whole-genome amplification methods for targeted next-generation sequencing using frozen and FFPE normal and cancer tissues , 2017, Scientific Reports.

[5]  Binay Panda,et al.  Validation of copy number variation analysis for next-generation sequencing diagnostics , 2017, European Journal of Human Genetics.

[6]  G. Blanck,et al.  Stratifying melanoma and breast cancer TCGA datasets on the basis of the CNV of transcription factor binding sites common to proliferation- and apoptosis-effector genes. , 2017, Gene.

[7]  Min Zhao,et al.  Expression of epithelial-mesenchymal transition-related genes increases with copy number in multiple cancer types , 2016, Oncotarget.

[8]  Phil Quirke,et al.  Cross-laboratory validation of the OncoScan® FFPE Assay, a multiplex tool for whole genome tumour profiling , 2015, BMC Medical Genomics.

[9]  Pieter Wesseling,et al.  DNA copy number analysis of fresh and formalin-fixed specimens by shallow whole-genome sequencing with identification and exclusion of problematic regions in the genome assembly , 2014, Genome research.

[10]  Derek Y. Chiang,et al.  Targeted next generation sequencing identifies clinically actionable mutations in patients with melanoma , 2014, Pigment cell & melanoma research.

[11]  Henry M. Wood,et al.  Estimating optimal window size for analysis of low-coverage next-generation sequence data , 2014, Bioinform..

[12]  Sean Davis,et al.  Chromothripsis and focal copy number alterations determine poor outcome in malignant melanoma. , 2013, Cancer research.

[13]  David G. Knowles,et al.  Fast Computation and Applications of Genome Mappability , 2012, PloS one.

[14]  K. Maclennan,et al.  A computational index derived from whole-genome copy number analysis is a novel tool for prognosis in early stage lung squamous cell carcinoma. , 2012, Genomics.

[15]  Joseph K. Pickrell,et al.  False positive peaks in ChIP-seq and other sequencing-based functional assays caused by unannotated high copy number regions , 2011, Bioinform..

[16]  E. J. Lee,et al.  KIT amplification and gene mutations in acral/mucosal melanoma in Korea , 2011, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[17]  C. Perou,et al.  Allele-specific copy number analysis of tumors , 2010, Proceedings of the National Academy of Sciences.

[18]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[19]  D. Schadendorf,et al.  Somatic alterations in the melanoma genome: A high‐resolution array‐based comparative genomic hybridization study , 2010, Genes, chromosomes & cancer.

[20]  K. Maclennan,et al.  Using next-generation sequencing for high resolution multiplex analysis of copy number variation from nanogram quantities of DNA from formalin-fixed paraffin-embedded specimens , 2010, Nucleic acids research.

[21]  Derek Y. Chiang,et al.  The landscape of somatic copy-number alteration across human cancers , 2010, Nature.

[22]  D. Bishop,et al.  Gene Expression Profiling of Paraffin-Embedded Primary Melanoma Using the DASL Assay Identifies Increased Osteopontin Expression as Predictive of Reduced Relapse-Free Survival , 2009, Clinical Cancer Research.

[23]  R. Ádány,et al.  Characterization of candidate gene copy number alterations in the 11q13 region along with BRAF and NRAS mutations in human melanoma , 2009, Modern Pathology.

[24]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[25]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[26]  Derek Y. Chiang,et al.  High-resolution mapping of copy-number alterations with massively parallel sequencing , 2009, Nature Methods.

[27]  Matthew J. Huentelman,et al.  IDENTIFICATION OF GENETIC VARIANTS USING BARCODED MULTIPLEXED SEQUENCING , 2008, Nature Methods.

[28]  Antony V. Cox,et al.  Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing , 2008, Nature Genetics.

[29]  M. Ringnér,et al.  Genomic profiling of malignant melanoma using tiling-resolution arrayCGH , 2007, Oncogene.

[30]  L. Chin,et al.  Amplification of CDK4 and MDM2 in malignant melanoma , 2006, Genes, chromosomes & cancer.

[31]  M. Wigler,et al.  Circular binary segmentation for the analysis of array-based DNA copy number data. , 2004, Biostatistics.

[32]  F. Haluska,et al.  PTEN signaling pathways in melanoma , 2003, Oncogene.

[33]  D. Pinkel,et al.  Mutations and copy number increase of HRAS in Spitz nevi with distinctive histopathological features. , 2000, The American journal of pathology.

[34]  L. Eckhart,et al.  Melanin binds reversibly to thermostable DNA polymerase and inhibits its activity. , 2000, Biochemical and biophysical research communications.

[35]  D. Pinkel,et al.  Chromosomal gains and losses in primary cutaneous melanomas detected by comparative genomic hybridization. , 1998, Cancer research.

[36]  J. Kirkwood,et al.  Homozygous deletions within human chromosome band 9p21 in melanoma. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Y. Tokuda,et al.  Fundamental study on the mechanism of DNA degradation in tissues fixed in formaldehyde. , 1990, Journal of clinical pathology.