ModEM: A modular system for inversion of electromagnetic geophysical data

Abstract We describe implementation of a modular system of computer codes for inversion of electromagnetic geophysical data, referred to as ModEM. The system is constructed with a fine level of modular granularity, with basic components of the inversion – forward modeling, sensitivity computations, inversion search algorithms, model parametrization and regularization, data functionals – interchangeable, reusable and readily extensible. Modular sensitivity computations and generic interfaces to parallelized inversion algorithms provide a ready framework for rapid implementation of new applications or inversion algorithms. We illustrate the code׳s versatility and capabilities for code reuse through implementation of 3D magnetotelluric (MT) and controlled-source EM (CSEM) inversions, using essentially the same components.

[1]  A. Roberts,et al.  A framework for 3-D joint inversion of MT, gravity and seismic refraction data , 2011 .

[2]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[3]  Michael S. Zhdanov,et al.  3D electromagnetic inversion based on quasi-analytical approximation , 2000 .

[4]  Gary D. Egbert,et al.  WSINV3DMT: Vertical magnetic field transfer function inversion and parallel implementation , 2009 .

[5]  E. Haber,et al.  Inversion of 3D electromagnetic data in frequency and time domain using an inexact all-at-once approach , 2004 .

[6]  Anna Avdeeva,et al.  Three-dimensional Magnetotelluric Inversion , 2008 .

[7]  Adam Schultz,et al.  Deep electrical resistivity structure of the northwestern U.S. derived from 3-D inversion of USArray magnetotelluric data , 2014 .

[8]  R. Parker,et al.  Occam's inversion; a practical algorithm for generating smooth models from electromagnetic sounding data , 1987 .

[9]  Yongwimon Lenbury,et al.  Three-dimensional magnetotelluric inversion : data-space method , 2005 .

[10]  Weerachai Siripunvaraporn,et al.  Three-Dimensional Magnetotelluric Inversion: An Introductory Guide for Developers and Users , 2011, Surveys in Geophysics.

[11]  G. Newman,et al.  Three-dimensional magnetotelluric inversion using non-linear conjugate gradients , 2000 .

[12]  William Rodi,et al.  Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion , 2001 .

[13]  O. Ritter,et al.  New Advances for a Joint 3D Inversion of Multiple , 2013 .

[14]  Anna Avdeeva,et al.  uasi-Newton optimization , 2009 .

[15]  J. Shadid,et al.  Three‐dimensional wideband electromagnetic modeling on massively parallel computers , 1996 .

[16]  Douglas W. Oldenburg,et al.  Calculation of sensitivities for the frequency-domain electromagnetic problem , 1994 .

[17]  William H. Press,et al.  Numerical Recipes in Fortran 77: The Art of Scientific Computing 2nd Editionn - Volume 1 of Fortran Numerical Recipes , 1992 .

[18]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[19]  Paul T. Boggs,et al.  Solution accelerators for large-scale three-dimensional electromagnetic inverse problems : Electromagnetic characterization of buried obstacles , 2004 .

[20]  Steven Constable,et al.  Inversion of magnetotelluric data for 2D structure with sharp resistivity contrasts , 2004 .

[21]  N. Meqbel,et al.  The electrical conductivity structure of the Dead Sea Basin derived from 2D and 3D inversion of magnetotelluric data , 2009 .

[22]  Gregory A. Newman,et al.  Three‐dimensional massively parallel electromagnetic inversion—I. Theory , 1997 .

[23]  Dmitry B. Avdeev,et al.  3D magnetotelluric inversion using a limited-memory quasi-Newton optimization , 2009 .

[24]  Oliver Ritter,et al.  Three-dimensional magnetotelluric inversion in practice—the electrical conductivity structure of the San Andreas Fault in Central California , 2013 .

[25]  Gary D. Egbert,et al.  Data space conjugate gradient inversion for 2-D magnetotelluric data , 2007 .

[26]  Michele De Stefano,et al.  Multiple-domain, simultaneous joint inversion of geophysical data with application to subsalt imaging , 2011 .

[27]  R. Parker Geophysical Inverse Theory , 1994 .

[28]  Gregory A. Newman,et al.  Solution strategies for two- and three-dimensional electromagnetic inverse problems , 2000 .

[29]  Gary D. Egbert,et al.  Computational recipes for electromagnetic inverse problems , 2012 .

[30]  Paul T. Boggs,et al.  Solution Accelerators For Large-scale 3D Electromagnetic Inverse Problems , 2004 .

[31]  Gary D. Egbert,et al.  Crust and upper mantle electrical conductivity beneath the Yellowstone Hotspot Track , 2012 .

[32]  J. T. Smith Conservative modeling of 3-D electromagnetic fields, Part II: Biconjugate gradient solution and an accelerator , 1996 .

[33]  Dmitry B. Avdeev,et al.  Three-Dimensional Electromagnetic Modelling and Inversion from Theory to Application , 2005 .

[34]  AKIN Object-oriented programming via Fortran 90/95 , 2003 .

[35]  Gary D. Egbert,et al.  Hybrid conjugate gradient-Occam algorithms for inversion of multifrequency and multitransmitter EM data , 2012 .

[36]  Ed Akin,et al.  Object-Oriented Programming via Fortran 90/95: Bibliography , 2003 .

[37]  Michael Commer,et al.  Three-dimensional controlled-source electromagnetic and magnetotelluric joint inversion , 2009 .

[38]  S. S. Gearhart,et al.  A novel impedance‐tuned monopole antenna , 1998 .

[39]  N. Roberts,et al.  Numerical Aspects of the Application of Recursive Filters to Variational Statistical Analysis. Part II: Spatially Inhomogeneous and Anisotropic General Covariances , 2003 .

[40]  Adam Schultz,et al.  Non-linear conjugate gradient inversion for global EM induction: Resolution studies , 2008 .

[41]  Yongwimon Lenbury,et al.  Numerical accuracy of magnetotelluric modeling: A comparison of finite difference approximations , 2002 .

[42]  Kerry Key,et al.  1D inversion of multicomponent, multifrequency marine CSEM data: Methodology and synthetic studies for resolving thin resistive layers , 2009 .

[43]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .