When antibiotics fail: a clinical and microbiological perspective on antibiotic tolerance and persistence of Staphylococcus aureus.

Staphylococcus aureus is a major human pathogen causing a vast array of infections with significant mortality. Its versatile physiology enables it to adapt to various environments. Specific physiological changes are thought to underlie the frequent failure of antimicrobial therapy despite susceptibility in standard microbiological assays. Bacteria capable of surviving high antibiotic concentrations despite having a genetically susceptible background are described as 'antibiotic tolerant'. In this review, we put current knowledge on environmental triggers and molecular mechanisms of increased antibiotic survival of S. aureus into its clinical context. We discuss animal and clinical evidence of its significance and outline strategies to overcome infections with antibiotic-tolerant S. aureus.

[1]  A. Richardson,et al.  The Toxin-Antitoxin MazEF Drives Staphylococcus aureus Biofilm Formation, Antibiotic Tolerance, and Chronic Infection , 2019, mBio.

[2]  B. Conlon,et al.  Chemical Induction of Aminoglycoside Uptake Overcomes Antibiotic Tolerance and Resistance in Staphylococcus aureus. , 2019, Cell chemical biology.

[3]  T. Coenye,et al.  Antimicrobial Tolerance and Metabolic Adaptations in Microbial Biofilms. , 2019, Trends in microbiology.

[4]  J. Adkins,et al.  Stochastic Variation in Expression of the Tricarboxylic Acid Cycle Produces Persister Cells , 2019, mBio.

[5]  A. Peleg,et al.  Unstable chromosome rearrangements in Staphylococcus aureus cause phenotype switching associated with persistent infections , 2019, Proceedings of the National Academy of Sciences.

[6]  Charlotte Michaux,et al.  Bacterial Persisters and Infection: Past, Present, and Progressing. , 2019, Annual review of microbiology.

[7]  O. Melter,et al.  Evaluation of TD test for analysis of persistence or tolerance in clinical isolates of Staphylococcus aureus , 2019 .

[8]  Petia M. Vlahovska,et al.  A selective membrane-targeting repurposed antibiotic with activity against persistent methicillin-resistant Staphylococcus aureus , 2019, Proceedings of the National Academy of Sciences.

[9]  J. Collins,et al.  Definitions and guidelines for research on antibiotic persistence , 2019, Nature Reviews Microbiology.

[10]  S. Hultgren,et al.  The Widely Used Antimicrobial Triclosan Induces High Levels of Antibiotic Tolerance In Vitro and Reduces Antibiotic Efficacy up to 100-Fold In Vivo , 2019, Antimicrobial Agents and Chemotherapy.

[11]  A. Charbit,et al.  Chronic Staphylococcus aureus lung infection correlates with proteogenomic and metabolic adaptations leading to an increased intracellular persistence , 2018, bioRxiv.

[12]  Jonathan M Stokes,et al.  Bacterial Metabolism and Antibiotic Efficacy , 2019, Cell metabolism.

[13]  A. Saliba,et al.  Salmonella persisters undermine host immune defenses during antibiotic treatment , 2018, Science.

[14]  T. Kirikae,et al.  Genetic and Transcriptomic Analyses of Ciprofloxacin-Tolerant Staphylococcus aureus Isolated by the Replica Plating Tolerance Isolation System (REPTIS) , 2018, Antimicrobial Agents and Chemotherapy.

[15]  Melissa J. Martin,et al.  Daptomycin Resistance and Tolerance Due to Loss of Function in Staphylococcus aureus dsp1 and asp23 , 2018, Antimicrobial Agents and Chemotherapy.

[16]  L. Cegelski,et al.  A Dual-Function Antibiotic-Transporter Conjugate Exhibits Superior Activity in Sterilizing MRSA Biofilms and Killing Persister Cells. , 2018, Journal of the American Chemical Society.

[17]  Nadja Leimer,et al.  Prolonged bacterial lag time results in small colony variants that represent a sub-population of persisters , 2018, Nature Communications.

[18]  Liang Li,et al.  Role of Purine Biosynthesis in Persistent Methicillin-Resistant Staphylococcus aureus Infection , 2018, The Journal of infectious diseases.

[19]  B. Pozzetto,et al.  Intracellular activity of antimicrobial compounds used for Staphylococcus aureus nasal decolonization , 2018, The Journal of antimicrobial chemotherapy.

[20]  Pia Abel zur Wiesch,et al.  Estimating treatment prolongation for persistent infections , 2018, Pathogens and disease.

[21]  R. Proctor,et al.  Daptomycin selects for genetic and phenotypic adaptations leading to antibiotic tolerance in MRSA , 2018, The Journal of antimicrobial chemotherapy.

[22]  C. Wolz,et al.  Inactivation of TCA cycle enhances Staphylococcus aureus persister cell formation in stationary phase , 2018, Scientific Reports.

[23]  A. Tomasz,et al.  Phenotypic signatures and genetic determinants of oxacillin tolerance in a laboratory mutant of Staphylococcus aureus , 2018, PloS one.

[24]  M. Fontaine‐Aupart,et al.  Live intramacrophagic Staphylococcus aureus as a potential cause of antibiotic therapy failure: observations in an in vivo mouse model of prosthetic vascular material infections , 2018, The Journal of antimicrobial chemotherapy.

[25]  S. Lévêque-Fort,et al.  Impact of Bacterial Membrane Fatty Acid Composition on the Failure of Daptomycin To Kill Staphylococcus aureus , 2018, Antimicrobial Agents and Chemotherapy.

[26]  M. Fauvart,et al.  Fighting bacterial persistence: Current and emerging anti-persister strategies and therapeutics. , 2018, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[27]  S. Pederson,et al.  Novel Insights into Staphylococcus aureus Deep Bone Infections: the Involvement of Osteocytes , 2018, mBio.

[28]  S. Kundu,et al.  Functionalization of β-lactam antibiotic on lysozyme capped gold nanoclusters retrogress MRSA and its persisters following awakening , 2018, Scientific Reports.

[29]  JianHe Sun,et al.  A Phage Lysin Fused to a Cell-Penetrating Peptide Kills Intracellular Methicillin-Resistant Staphylococcus aureus in Keratinocytes and Has Potential as a Treatment for Skin Infections in Mice , 2018, Applied and Environmental Microbiology.

[30]  Huajian Gao,et al.  A new class of synthetic retinoid antibiotics effective against bacterial persisters , 2018, Nature.

[31]  J. Collins,et al.  Targeting Antibiotic Tolerance, Pathogen by Pathogen , 2018, Cell.

[32]  P. Garred,et al.  Persistent Intracellular Staphylococcus aureus in Keratinocytes Lead to Activation of the Complement System with Subsequent Reduction in the Intracellular Bacterial Load , 2018, Front. Immunol..

[33]  M. Vestergaard,et al.  Quorum Sensing-Regulated Phenol-Soluble Modulins Limit Persister Cell Populations in Staphylococcus aureus , 2018, Front. Microbiol..

[34]  J. Diallo,et al.  Does Treatment Order Matter? Investigating the Ability of Bacteriophage to Augment Antibiotic Activity against Staphylococcus aureus Biofilms , 2018, Front. Microbiol..

[35]  D. Robinson,et al.  Mutation of Agr Is Associated with the Adaptation of Staphylococcus aureus to the Host during Chronic Osteomyelitis , 2018, Front. Cell. Infect. Microbiol..

[36]  J. Drijfhout,et al.  The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms , 2018, Science Translational Medicine.

[37]  R. Montelaro,et al.  Elimination of Antibiotic Resistant Surgical Implant Biofilms Using an Engineered Cationic Amphipathic Peptide WLBU2 , 2017, Scientific Reports.

[38]  M. Fauvart,et al.  Antibacterial Activity of 1-[(2,4-Dichlorophenethyl)amino]-3-Phenoxypropan-2-ol against Antibiotic-Resistant Strains of Diverse Bacterial Pathogens, Biofilms and in Pre-clinical Infection Models , 2017, Front. Microbiol..

[39]  Saloni R. Jain,et al.  Understanding and Sensitizing Density-Dependent Persistence to Quinolone Antibiotics. , 2017, Molecular cell.

[40]  M. Elasri,et al.  msaABCR operon is involved in persister cell formation in Staphylococcus aureus , 2017, BMC Microbiology.

[41]  G. Aisenberg,et al.  Follow-up Blood Cultures in Gram-Negative Bacteremia: Are They Needed? , 2017, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[42]  Y. Zhang,et al.  The Agr Quorum Sensing System Represses Persister Formation through Regulation of Phenol Soluble Modulins in Staphylococcus aureus , 2017, Front. Microbiol..

[43]  K. Drlica,et al.  Tuning of the Lethal Response to Multiple Stressors with a Single-Site Mutation during Clinical Infection by Staphylococcus aureus , 2017, mBio.

[44]  Matthias Heinemann,et al.  Bacterial persistence from a system-level perspective. , 2017, Current opinion in biotechnology.

[45]  L. Good,et al.  Targeting the hard to reach: challenges and novel strategies in the treatment of intracellular bacterial infections , 2017, British journal of pharmacology.

[46]  N. Shoresh,et al.  An Experimental Framework for Quantifying Bacterial Tolerance , 2017, Biophysical journal.

[47]  M. Wittekind,et al.  Bacteriophage Lysin CF-301, a Potent Antistaphylococcal Biofilm Agent , 2017, Antimicrobial Agents and Chemotherapy.

[48]  M. Seleem,et al.  Targeting biofilms and persisters of ESKAPE pathogens with P14KanS, a kanamycin peptide conjugate. , 2017, Biochimica et biophysica acta. General subjects.

[49]  Hussain Yousaf,et al.  Identification of N‐Arylated NH125 Analogues as Rapid Eradicating Agents against MRSA Persister Cells and Potent Biofilm Killers of Gram‐Positive Pathogens , 2017, Chembiochem : a European journal of chemical biology.

[50]  K. Lewis,et al.  ATP-Dependent Persister Formation in Escherichia coli , 2017, mBio.

[51]  N. Balaban,et al.  TDtest: easy detection of bacterial tolerance and persistence in clinical isolates by a modified disk-diffusion assay , 2017, Scientific Reports.

[52]  T. Shireman,et al.  Relationship between vancomycin tolerance and clinical outcomes in Staphylococcus aureus bacteraemia , 2017, The Journal of antimicrobial chemotherapy.

[53]  G. Schultz,et al.  Nitroxoline: a broad-spectrum biofilm-eradicating agent against pathogenic bacteria. , 2017, International journal of antimicrobial agents.

[54]  K. Gerdes,et al.  Mechanisms of bacterial persistence during stress and antibiotic exposure , 2016, Science.

[55]  T. Wood,et al.  Halogenated indoles eradicate bacterial persister cells and biofilms , 2016, AMB Express.

[56]  N. Cogan,et al.  Theoretical and experimental evidence for eliminating persister bacteria by manipulating killing timing. , 2016, FEMS microbiology letters.

[57]  K. Hiramatsu,et al.  In Vitro Tolerance of Drug-Naive Staphylococcus aureus Strain FDA209P to Vancomycin , 2016, Antimicrobial Agents and Chemotherapy.

[58]  Thomas B. Clarke,et al.  Staphylococcus aureus inactivates daptomycin by releasing membrane phospholipids , 2016, Nature Microbiology.

[59]  T. Wood,et al.  DNA‐crosslinker cisplatin eradicates bacterial persister cells , 2016, Biotechnology and bioengineering.

[60]  M. Seleem,et al.  Dual Targeting of Intracellular Pathogenic Bacteria with a Cleavable Conjugate of Kanamycin and an Antibacterial Cell-Penetrating Peptide. , 2016, Journal of the American Chemical Society.

[61]  P. Stewart,et al.  Gel-Entrapped Staphylococcus aureus Bacteria as Models of Biofilm Infection Exhibit Growth in Dense Aggregates, Oxygen Limitation, Antibiotic Tolerance, and Heterogeneous Gene Expression , 2016, Antimicrobial Agents and Chemotherapy.

[62]  A. Cheung,et al.  Effect of clpP and clpC deletion on persister cell number in Staphylococcus aureus. , 2016, Journal of medical microbiology.

[63]  J. O’Gara,et al.  Untangling the Diverse and Redundant Mechanisms of Staphylococcus aureus Biofilm Formation , 2016, PLoS pathogens.

[64]  P. Kubes,et al.  Br Ief Definitive Repor T Identification and Treatment of the Staphylococcus Aureus Reservoir in Vivo , 2022 .

[65]  M. Fauvart,et al.  Should we develop screens for multi-drug antibiotic tolerance? , 2016, Expert review of anti-infective therapy.

[66]  N. Verstraeten,et al.  In Vitro Emergence of High Persistence upon Periodic Aminoglycoside Challenge in the ESKAPE Pathogens , 2016, Antimicrobial Agents and Chemotherapy.

[67]  Ofer Fridman,et al.  Distinguishing between resistance, tolerance and persistence to antibiotic treatment , 2016, Nature Reviews Microbiology.

[68]  M. Prax,et al.  Glucose Augments Killing Efficiency of Daptomycin Challenged Staphylococcus aureus Persisters , 2016, PloS one.

[69]  Pieterjan Vanden Boer,et al.  Frequency of antibiotic application drives rapid evolutionary adaptation of Escherichia coli persistence , 2016, Nature Microbiology.

[70]  A. Gründling,et al.  ppGpp negatively impacts ribosome assembly affecting growth and antimicrobial tolerance in Gram-positive bacteria , 2016, Proceedings of the National Academy of Sciences.

[71]  Petia M. Vlahovska,et al.  NH125 kills methicillin-resistant Staphylococcus aureus persisters by lipid bilayer disruption. , 2016, Future medicinal chemistry.

[72]  P. François,et al.  Daptomycin Tolerance in the Staphylococcus aureus pitA6 Mutant Is Due to Upregulation of the dlt Operon , 2016, Antimicrobial Agents and Chemotherapy.

[73]  Nadja Leimer,et al.  Nonstable Staphylococcus aureus Small-Colony Variants Are Induced by Low pH and Sensitized to Antimicrobial Therapy by Phagolysosomal Alkalinization. , 2016, The Journal of infectious diseases.

[74]  W. Xiong,et al.  Sending repeat cultures: is there a role in the management of bacteremic episodes? (SCRIBE study) , 2015, BMC Infectious Diseases.

[75]  J. Adkins,et al.  Persister formation in Staphylococcus aureus is associated with ATP depletion. , 2016, Nature microbiology.

[76]  V. Fowler,et al.  Infective endocarditis , 2016, Nature Reviews Disease Primers.

[77]  J. Zhao,et al.  Transposon Mutagenesis Identifies Novel Genes Associated with Staphylococcus aureus Persister Formation , 2015, Frontiers in Microbiology.

[78]  J. Haldar,et al.  Aryl-Alkyl-Lysines: Agents That Kill Planktonic Cells, Persister Cells, Biofilms of MRSA and Protect Mice from Skin-Infection , 2015, PloS one.

[79]  M. Vestergaard,et al.  Activation of the SOS response increases the frequency of small colony variants , 2015, BMC Research Notes.

[80]  W. Shi,et al.  Genetic Screen Reveals the Role of Purine Metabolism in Staphylococcus aureus Persistence to Rifampicin , 2015, Antibiotics.

[81]  P. S. Andersen,et al.  Novel antibody–antibiotic conjugate eliminates intracellular S. aureus , 2015, Nature.

[82]  T. Wood,et al.  Combatting bacterial infections by killing persister cells with mitomycin C. , 2015, Environmental microbiology.

[83]  V. Mai,et al.  Halogenated Phenazines that Potently Eradicate Biofilms, MRSA Persister Cells in Non-Biofilm Cultures, and Mycobacterium tuberculosis. , 2015, Angewandte Chemie.

[84]  Xinmiao Fu,et al.  Hypoionic shock treatment enables aminoglycosides antibiotics to eradicate bacterial persisters , 2015, Scientific Reports.

[85]  K. Kirker,et al.  Potency and penetration of telavancin in staphylococcal biofilms. , 2015, International journal of antimicrobial agents.

[86]  B. Zhu,et al.  A Clinical Drug Library Screen Identifies Tosufloxacin as Being Highly Active against Staphylococcus aureus Persisters , 2015, Antibiotics.

[87]  Ahmad S. Khalil,et al.  Antibiotic efficacy is linked to bacterial cellular respiration. , 2015, Proceedings of the National Academy of Sciences of the United States of America.

[88]  M. Fraunholz,et al.  A Novel Point Mutation Promotes Growth Phase-Dependent Daptomycin Tolerance in Staphylococcus aureus , 2015, Antimicrobial Agents and Chemotherapy.

[89]  Annie L. Conery,et al.  Identification of an Antimicrobial Agent Effective against Methicillin-Resistant Staphylococcus aureus Persisters Using a Fluorescence-Based Screening Strategy , 2015, PloS one.

[90]  Vance G. Fowler,et al.  Staphylococcus aureus Infections: Epidemiology, Pathophysiology, Clinical Manifestations, and Management , 2015, Clinical Microbiology Reviews.

[91]  M. Waldor,et al.  Classic reaction kinetics can explain complex patterns of antibiotic action , 2015, Science Translational Medicine.

[92]  R. Bertram,et al.  The MazEF Toxin-Antitoxin System Alters the β-Lactam Susceptibility of Staphylococcus aureus , 2015, PloS one.

[93]  Anthony C. Duong,et al.  Role of Phenol-Soluble Modulins in Formation of Staphylococcus aureus Biofilms in Synovial Fluid , 2015, Infection and Immunity.

[94]  E. O. López-Villegas,et al.  Vancomycin Tolerant, Methicillin-Resistant Staphylococcus aureus Reveals the Effects of Vancomycin on Cell Wall Thickening , 2015, PloS one.

[95]  J. Parkhill,et al.  Staphylococcus aureus Adapts to Oxidative Stress by Producing H2O2-Resistant Small-Colony Variants via the SOS Response , 2015, Infection and Immunity.

[96]  J. Parvizi,et al.  Effect of biofilms on recalcitrance of staphylococcal joint infection to antibiotic treatment. , 2015, The Journal of infectious diseases.

[97]  J. Parvizi,et al.  Staphylococcal Persistence Due to Biofilm Formation in Synovial Fluid Containing Prophylactic Cefazolin , 2015, Antimicrobial Agents and Chemotherapy.

[98]  Stanley N Cohen,et al.  Reversible Antibiotic Tolerance Induced in Staphylococcus aureus by Concurrent Drug Exposure , 2015, mBio.

[99]  M. Mariconda,et al.  Factors related to outcome of early and delayed prosthetic joint infections. , 2015, The Journal of infection.

[100]  P. Stewart Antimicrobial Tolerance in Biofilms , 2015, Microbiology spectrum.

[101]  S. Wigneshweraraj,et al.  What role does the quorum-sensing accessory gene regulator system play during Staphylococcus aureus bacteremia? , 2014, Trends in microbiology.

[102]  W. Eisenreich,et al.  Metabolic and transcriptional activities of Staphylococcus aureus challenged with high-doses of daptomycin. , 2014, International journal of medical microbiology : IJMM.

[103]  D. Lebeaux,et al.  pH-mediated potentiation of aminoglycosides kills bacterial persisters and eradicates in vivo biofilms. , 2014, The Journal of infectious diseases.

[104]  B. Conlon,et al.  Staphylococcus aureus chronic and relapsing infections: Evidence of a role for persister cells , 2014, BioEssays : news and reviews in molecular, cellular and developmental biology.

[105]  N. Shoresh,et al.  Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations , 2014, Nature.

[106]  B. Martínez,et al.  Effective Removal of Staphylococcal Biofilms by the Endolysin LysH5 , 2014, PloS one.

[107]  Andrea M. Kasko,et al.  Engineering Persister-Specific Antibiotics with Synergistic Antimicrobial Functions , 2014, ACS nano.

[108]  R. Proctor,et al.  Staphylococcus aureus Small Colony Variants (SCVs): a road map for the metabolic pathways involved in persistent infections , 2014, Front. Cell. Infect. Microbiol..

[109]  C. Murray,et al.  Human plasma enhances the expression of Staphylococcal microbial surface components recognizing adhesive matrix molecules promoting biofilm formation and increases antimicrobial tolerance In Vitro , 2014, BMC Research Notes.

[110]  D. Hess,et al.  Aminoglycoside inhibition of Staphylococcus aureus biofilm formation is nutrient dependent. , 2014, Journal of medical microbiology.

[111]  A. Singer,et al.  Management of skin abscesses in the era of methicillin-resistant Staphylococcus aureus. , 2014, The New England journal of medicine.

[112]  G. Peters,et al.  Staphylococcus aureus persistence in non-professional phagocytes. , 2014, International journal of medical microbiology : IJMM.

[113]  U. Gerth,et al.  Clp chaperones and proteases are central in stress survival, virulence and antibiotic resistance of Staphylococcus aureus. , 2014, International journal of medical microbiology : IJMM.

[114]  T. S. Wilkinson,et al.  Dormant Cells of Staphylococcus aureus Are Resuscitated by Spent Culture Supernatant , 2014, PLoS ONE.

[115]  C. Wolz,et al.  Two Small (p)ppGpp Synthases in Staphylococcus aureus Mediate Tolerance against Cell Envelope Stress Conditions , 2013, Journal of bacteriology.

[116]  J. Chapman,et al.  Spinal epidural abscesses: risk factors, medical versus surgical management, a retrospective review of 128 cases. , 2013, The spine journal : official journal of the North American Spine Society.

[117]  Richard D. Smith,et al.  Activated ClpP kills persisters and eradicates a chronic biofilm infection , 2013, Nature.

[118]  A. Rincé,et al.  Analysis of the tolerance of pathogenic enterococci and Staphylococcus aureus to cell wall active antibiotics. , 2013, The Journal of antimicrobial chemotherapy.

[119]  Y. Mizunoe,et al.  Effects of Bacteriocins on Methicillin-Resistant Staphylococcus aureus Biofilm , 2013, Antimicrobial Agents and Chemotherapy.

[120]  G. Donelli,et al.  Antibiotic pressure can induce the viable but non-culturable state in Staphylococcus aureus growing in biofilms. , 2013, The Journal of antimicrobial chemotherapy.

[121]  R. Proctor,et al.  Antibiotic activity against small-colony variants of Staphylococcus aureus: review of in vitro, animal and clinical data. , 2013, The Journal of antimicrobial chemotherapy.

[122]  E. Gómez-Barrena,et al.  In vitro susceptibility to antibiotics of staphylococci in biofilms isolated from orthopaedic infections. , 2013, International journal of antimicrobial agents.

[123]  S. Choi,et al.  Persistent Staphylococcus aureus Bacteremia , 2013, Medicine.

[124]  S. Klumpp,et al.  Interplay between Population Dynamics and Drug Tolerance of Staphylococcus aureus Persister Cells , 2013, Journal of Molecular Microbiology and Biotechnology.

[125]  H. Park,et al.  Treatment Duration for Uncomplicated Staphylococcus aureus Bacteremia To Prevent Relapse: Analysis of a Prospective Observational Cohort Study , 2012, Antimicrobial Agents and Chemotherapy.

[126]  P. François,et al.  The Stringent Response of Staphylococcus aureus and Its Impact on Survival after Phagocytosis through the Induction of Intracellular PSMs Expression , 2012, PLoS pathogens.

[127]  R. Bertram,et al.  Staphylococcus aureus Persisters Tolerant to Bactericidal Antibiotics , 2012, Journal of Molecular Microbiology and Biotechnology.

[128]  A. Horswill,et al.  Low Levels of β-Lactam Antibiotics Induce Extracellular DNA Release and Biofilm Formation in Staphylococcus aureus , 2012, mBio.

[129]  H. Ingmer,et al.  Planktonic Aggregates of Staphylococcus aureus Protect against Common Antibiotics , 2012, PloS one.

[130]  W. Rose,et al.  Vancomycin Tolerance in Methicillin-Resistant Staphylococcus aureus: Influence of Vancomycin, Daptomycin, and Telavancin on Differential Resistance Gene Expression , 2012, Antimicrobial Agents and Chemotherapy.

[131]  M. Fraunholz,et al.  Intracellular staphylococcus aureus: Live-in and let die , 2012, Front. Cell. Inf. Microbio..

[132]  S. V. van Hal,et al.  Predictors of Mortality in Staphylococcus aureus Bacteremia , 2012, Clinical Microbiology Reviews.

[133]  T. Kielian,et al.  Deciphering mechanisms of staphylococcal biofilm evasion of host immunity , 2012, Front. Cell. Inf. Microbio..

[134]  A. O’Neill,et al.  Loss of Function of the GdpP Protein Leads to Joint β-Lactam/Glycopeptide Tolerance in Staphylococcus aureus , 2011, Antimicrobial Agents and Chemotherapy.

[135]  James C. Abbott,et al.  c-di-AMP Is a New Second Messenger in Staphylococcus aureus with a Role in Controlling Cell Size and Envelope Stress , 2011, PLoS pathogens.

[136]  L. Armitige,et al.  Predictors of Relapse of Methicillin-Resistant Staphylococcus aureus Bacteremia after Treatment with Vancomycin , 2011, Journal of Clinical Microbiology.

[137]  F. Baldelli,et al.  Bactericidal activity of oxacillin and glycopeptides against Staphylococcus aureus in patients with endocarditis: Looking for a relationship between tolerance and outcome , 2011, Annals of Clinical Microbiology and Antimicrobials.

[138]  James J. Collins,et al.  Metabolite-Enabled Eradication of Bacterial Persisters by Aminoglycosides , 2011, Nature.

[139]  D. Missiakas,et al.  A play in four acts: Staphylococcus aureus abscess formation. , 2011, Trends in microbiology.

[140]  V. Gant,et al.  Are bloodstream leukocytes Trojan Horses for the metastasis of Staphylococcus aureus? , 2011, Nature Reviews Microbiology.

[141]  H. Ishikura,et al.  Vancomycin Bactericidal Activity as a Predictor of 30-Day Mortality in Patients with Methicillin-Resistant Staphylococcus aureus Bacteremia , 2011, Antimicrobial Agents and Chemotherapy.

[142]  R. Proctor,et al.  Staphylococcus aureus phenotype switching: an effective bacterial strategy to escape host immune response and establish a chronic infection , 2011, EMBO molecular medicine.

[143]  P. Miller,et al.  Emerging trends in antibacterial discovery : answering the call to arms , 2011 .

[144]  Sara E Cosgrove,et al.  Clinical practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. , 2011, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[145]  C. Cabellos,et al.  Efficacy of Usual and High Doses of Daptomycin in Combination with Rifampin versus Alternative Therapies in Experimental Foreign-Body Infection by Methicillin-Resistant Staphylococcus aureus , 2010, Antimicrobial Agents and Chemotherapy.

[146]  D. Viemann,et al.  Staphylococcus aureus small-colony variants are adapted phenotypes for intracellular persistence. , 2010, The Journal of infectious diseases.

[147]  Hila Sheftel,et al.  Automated imaging with ScanLag reveals previously undetectable bacterial growth phenotypes , 2010, Nature Methods.

[148]  P. Stewart,et al.  Biofilm maturity studies indicate sharp debridement opens a time- dependent therapeutic window. , 2010, Journal of wound care.

[149]  Yanmin Hu,et al.  A New Approach for the Discovery of Antibiotics by Targeting Non-Multiplying Bacteria: A Novel Topical Antibiotic for Staphylococcal Infections , 2010, PloS one.

[150]  Hyun-Woo Rhee,et al.  Two Novel Point Mutations in Clinical Staphylococcus aureus Reduce Linezolid Susceptibility and Switch on the Stringent Response to Promote Persistent Infection , 2010, PLoS pathogens.

[151]  D. Citron,et al.  Efficacy of vancomycin and daptomycin against Staphylococcus aureus isolates collected over 29 years. , 2010, Diagnostic microbiology and infectious disease.

[152]  P. Tulkens,et al.  Intra- and Extracellular Activities of Dicloxacillin against Staphylococcus aureus In Vivo and In Vitro , 2010, Antimicrobial Agents and Chemotherapy.

[153]  H. Pau,et al.  Intracellular Persisting Staphylococcus aureus Is the Major Pathogen in Recurrent Tonsillitis , 2010, PloS one.

[154]  A. Cheung,et al.  Proteolytic Regulation of Toxin-Antitoxin Systems by ClpPC in Staphylococcus aureus , 2009, Journal of bacteriology.

[155]  K. Lewis,et al.  Persister cells. , 2010, Annual review of microbiology.

[156]  I. Chopra,et al.  Targeting bacterial membrane function: an underexploited mechanism for treating persistent infections , 2010, Nature Reviews Microbiology.

[157]  I. Chopra,et al.  XF-70 and XF-73, novel antibacterial agents active against slow-growing and non-dividing cultures of Staphylococcus aureus including biofilms. , 2010, The Journal of antimicrobial chemotherapy.

[158]  Ronald N. Jones,et al.  Occurrence of vancomycin-tolerant and heterogeneous vancomycin-intermediate strains (hVISA) among Staphylococcus aureus causing bloodstream infections in nine USA hospitals. , 2009, The Journal of antimicrobial chemotherapy.

[159]  P. Stewart,et al.  Daptomycin Rapidly Penetrates a Staphylococcus epidermidis Biofilm , 2009, Antimicrobial Agents and Chemotherapy.

[160]  H. Lilie,et al.  The antibiotic ADEP reprogrammes ClpP, switching it from a regulated to an uncontrolled protease , 2009, EMBO molecular medicine.

[161]  Steven D. Brown,et al.  Inhibitory and Bactericidal Activities of Daptomycin, Vancomycin, and Teicoplanin against Methicillin-Resistant Staphylococcus aureus Isolates Collected from 1985 to 2007 , 2009, Antimicrobial Agents and Chemotherapy.

[162]  W. Kelley,et al.  Staphylococcus aureus: new evidence for intracellular persistence. , 2009, Trends in microbiology.

[163]  A. Cheung,et al.  Overexpression of MazFSa in Staphylococcus aureus Induces Bacteriostasis by Selectively Targeting mRNAs for Cleavage , 2009, Journal of bacteriology.

[164]  S. Newsom Ogston's coccus. , 2008, The Journal of hospital infection.

[165]  Blaise R. Boles,et al.  agr-Mediated Dispersal of Staphylococcus aureus Biofilms , 2008, PLoS pathogens.

[166]  Timothy Foster,et al.  A Potential New Pathway for Staphylococcus aureus Dissemination: The Silent Survival of S. aureus Phagocytosed by Human Monocyte-Derived Macrophages , 2008, PloS one.

[167]  J. Alder,et al.  Bactericidal Action of Daptomycin against Stationary-Phase and Nondividing Staphylococcus aureus Cells , 2007, Antimicrobial Agents and Chemotherapy.

[168]  J. Whitcher,et al.  Spectrum of eye disease caused by methicillin-resistant Staphylococcus aureus. , 2007, American journal of ophthalmology.

[169]  Jerome J. Schentag,et al.  Vancomycin In Vitro Bactericidal Activity and Its Relationship to Efficacy in Clearance of Methicillin-Resistant Staphylococcus aureus Bacteremia , 2007, Antimicrobial Agents and Chemotherapy.

[170]  P. Stewart,et al.  Spatial Patterns of DNA Replication, Protein Synthesis, and Oxygen Concentration within Bacterial Biofilms Reveal Diverse Physiological States , 2007, Journal of bacteriology.

[171]  杜昕,et al.  Infective endocarditis , 2007 .

[172]  L. Aguilar,et al.  Conservative treatment of staphylococcal prosthetic joint infections in elderly patients. , 2006, The American journal of medicine.

[173]  R. Sauermann,et al.  Principles of Antibiotic Penetration into Abscess Fluid , 2006, Pharmacology.

[174]  J. Hacker,et al.  Global Regulatory Impact of ClpP Protease of Staphylococcus aureus on Regulons Involved in Virulence, Oxidative Stress Response, Autolysis, and DNA Repair , 2006, Journal of bacteriology.

[175]  K. Rolston,et al.  Vancomycin tolerance, a potential mechanism for refractory gram‐positive bacteremia observational study in patients with cancer , 2006, Cancer.

[176]  G. Eliopoulos,et al.  Effects of prolonged vancomycin administration on methicillin-resistant Staphylococcus aureus (MRSA) in a patient with recurrent bacteraemia. , 2006, The Journal of antimicrobial chemotherapy.

[177]  R. Proctor,et al.  Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections , 2006, Nature Reviews Microbiology.

[178]  A. Tomasz,et al.  Inhibition of the Autolytic System by Vancomycin Causes Mimicry of Vancomycin-Intermediate Staphylococcus aureus-Type Resistance, Cell Concentration Dependence of the MIC, and Antibiotic Tolerance in Vancomycin-Susceptible S. aureus , 2006, Antimicrobial Agents and Chemotherapy.

[179]  Ronald N. Jones Microbiological features of vancomycin in the 21st century: minimum inhibitory concentration creep, bactericidal/static activity, and applied breakpoints to predict clinical outcomes or detect resistant strains. , 2006, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[180]  Alex van Belkum,et al.  The role of nasal carriage in Staphylococcus aureus infections. , 2005, The Lancet. Infectious diseases.

[181]  H. Sahl,et al.  Dysregulation of bacterial proteolytic machinery by a new class of antibiotics , 2005, Nature Medicine.

[182]  P. François,et al.  Evidence of an intracellular reservoir in the nasal mucosa of patients with recurrent Staphylococcus aureus rhinosinusitis. , 2005, The Journal of infectious diseases.

[183]  M. Bischoff,et al.  Staphylococcus aureus ClpC Is Required for Stress Resistance, Aconitase Activity, Growth Recovery, and Death , 2005, Journal of bacteriology.

[184]  A. Klibanov,et al.  Immobilized N-alkylated polyethylenimine avidly kills bacteria by rupturing cell membranes with no resistance developed. , 2005, Biotechnology and bioengineering.

[185]  D. Goldmann,et al.  Use of Confocal Microscopy To Analyze the Rate of Vancomycin Penetration through Staphylococcus aureus Biofilms , 2005, Antimicrobial Agents and Chemotherapy.

[186]  K. Rice,et al.  Acetic Acid Induces Expression of the Staphylococcus aureus cidABC and lrgAB Murein Hydrolase Regulator Operons , 2005, Journal of bacteriology.

[187]  W. Goessens,et al.  In vitro development and stability of tolerance to cloxacillin and vancomycin inStaphylococcus aureus , 1994, European Journal of Clinical Microbiology and Infectious Diseases.

[188]  A. Tomasz,et al.  Construction of a penicillin-tolerant laboratory mutant ofStaphylococcus aureus , 1986, European Journal of Clinical Microbiology.

[189]  P Stoodley,et al.  Survival strategies of infectious biofilms. , 2005, Trends in microbiology.

[190]  W. Zimmerli,et al.  Prosthetic-joint infections. , 2004, The New England journal of medicine.

[191]  V. Fowler,et al.  Persistent bacteremia due to methicillin-resistant Staphylococcus aureus infection is associated with agr dysfunction and low-level in vitro resistance to thrombin-induced platelet microbicidal protein. , 2004, The Journal of infectious diseases.

[192]  S. Leibler,et al.  Bacterial Persistence as a Phenotypic Switch , 2004, Science.

[193]  P. Stoodley,et al.  Detachment Characteristics and Oxacillin Resistance of Staphyloccocus aureus Biofilm Emboli in an In Vitro Catheter Infection Model , 2004, Journal of bacteriology.

[194]  G. Eliopoulos,et al.  Relationship of MIC and Bactericidal Activity to Efficacy of Vancomycin for Treatment of Methicillin-Resistant Staphylococcus aureus Bacteremia , 2004, Journal of Clinical Microbiology.

[195]  R. Darouiche,et al.  Treatment of infections associated with surgical implants. , 2004, The New England journal of medicine.

[196]  M. Krönke,et al.  Antibiotic-induced persistence of cytotoxic Staphylococcus aureus in non-phagocytic cells. , 2004, The Journal of antimicrobial chemotherapy.

[197]  K. Lewis,et al.  Persister cells and tolerance to antimicrobials. , 2004, FEMS microbiology letters.

[198]  C. Woods,et al.  Clinical identifiers of complicated Staphylococcus aureus bacteremia. , 2003, Archives of internal medicine.

[199]  Patricia F Triplett,et al.  A Prospective Multicenter Study of Staphylococcus aureus Bacteremia: Incidence of Endocarditis, Risk Factors for Mortality, and Clinical Impact of Methicillin Resistance , 2003, Medicine.

[200]  B. Firek,et al.  The Staphylococcus aureus cidAB Operon: Evaluation of Its Role in Regulation of Murein Hydrolase Activity and Penicillin Tolerance , 2003, Journal of bacteriology.

[201]  K. Lewis,et al.  Riddle of Biofilm Resistance , 2001, Antimicrobial Agents and Chemotherapy.

[202]  Kenneth W. Bayles,et al.  The Staphylococcus aureus lrgAB Operon Modulates Murein Hydrolase Activity and Penicillin Tolerance , 2000, Journal of bacteriology.

[203]  A. Jones,et al.  Glycopeptide tolerance in bacteria causing endocarditis. , 1999, The Journal of antimicrobial chemotherapy.

[204]  A. King,et al.  Glycopeptide tolerance in Staphylococcus aureus. , 1998, The Journal of antimicrobial chemotherapy.

[205]  P. Vaudaux Phenotypic antibiotic tolerance of Staphylococcus aureus in implant-related infections: relationship with in vitro colonization of artificial surfaces. , 1998, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[206]  R. Proctor,et al.  Decreased susceptibility to antibiotic killing of a stable small colony variant of Staphylococcus aureus in fluid phase and on fibronectin-coated surfaces. , 1997, The Journal of antimicrobial chemotherapy.

[207]  R. Arbeit,et al.  Persistent and relapsing infections associated with small-colony variants of Staphylococcus aureus. , 1995, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[208]  D. Musher,et al.  Vancomycin penetration into biofilm covering infected prostheses and effect on bacteria. , 1994, The Journal of infectious diseases.

[209]  G. Kaatz,et al.  In vitro pharmacodynamic effects of concentration, pH, and growth phase on serum bactericidal activities of daptomycin and vancomycin , 1992, Antimicrobial Agents and Chemotherapy.

[210]  R. Auckenthaler,et al.  Resistance of Staphylococcus aureus recovered from infected foreign body in vivo to killing by antimicrobials. , 1991, The Journal of infectious diseases.

[211]  W. Goessens,et al.  Role of tolerance in cloxacillin treatment of experimental Staphylococcus aureus endocarditis. , 1991, The Journal of infectious diseases.

[212]  C. Stratton,et al.  Multicenter collaborative evaluation of a standardized serum bactericidal test as a predictor of therapeutic efficacy in acute and chronic osteomyelitis. , 1987, The American journal of medicine.

[213]  J. Costerton,et al.  Bacterial biofilms in nature and disease. , 1987, Annual review of microbiology.

[214]  J. Sherris Problems in in vitro determination of antibiotic tolerance in clinical isolates , 1986, Antimicrobial Agents and Chemotherapy.

[215]  A. Tomasz,et al.  Antibiotic tolerance among clinical isolates of bacteria , 1986, Antimicrobial Agents and Chemotherapy.

[216]  J. Rahal,et al.  Relationship of staphylococcal tolerance, teichoic acid antibody, and serum bactericidal activity to therapeutic outcome in Staphylococcus aureus bacteremia. , 1986, The American journal of medicine.

[217]  W. Goessens,et al.  Responses of tolerant and nontolerant Staphylococcus aureus strains to methicillin treatment in an experimental infection in mice , 1984, Antimicrobial Agents and Chemotherapy.

[218]  J. Sheagren Staphylococcus aureus. The persistent pathogen (first of two parts). , 1984, The New England journal of medicine.

[219]  J. Sheagren Staphylococcus aureus. The persistent pathogen (second of two parts). , 1984, The New England journal of medicine.

[220]  T. Sorrell,et al.  Vancomycin therapy for methicillin-resistant Staphylococcus aureus. , 1982, Annals of internal medicine.

[221]  P. Guze,et al.  Variables in demonstrating methicillin tolerance in Staphylococcus aureus strains , 1982, Antimicrobial Agents and Chemotherapy.

[222]  P. Guze,et al.  The role of antibiotic tolerance in the response to treatment of pyelonephritis due to Staphylococcus aureus in rats. , 1982, The Journal of infectious diseases.

[223]  M. Kalin,et al.  Therapeutic failure in pneumonia caused by a tolerant strain of Staphylococcus aureus. , 1982, Scandinavian journal of infectious diseases.

[224]  C. Kallick,et al.  Clinical significance of tolerant strains of Staphylococcus aureus in patients with endocarditis. , 1980, Annals of internal medicine.

[225]  L. Peterson,et al.  Determination of tolerance to antibiotic bactericidal activity on Kirby-Bauer susceptibility plates. , 1980, American journal of clinical pathology.

[226]  L. Peterson,et al.  Serious staphylococcal infections with strains tolerant to bactericidal antibiotics. , 1979, Archives of internal medicine.

[227]  R. Petersdorf,et al.  Significance of Methicillin Tolerance in Experimental Staphylococcal Endocarditis , 1979, Antimicrobial Agents and Chemotherapy.

[228]  E. Kaplan,et al.  Staphylococcus aureus endocarditis. Combined therapy with vancomycin and rifampin. , 1978 .

[229]  E. Dingeldein,et al.  The release of gentamicin from polymethylmethacrylate beads. An experimental and pharmacokinetic study. , 1978, The Journal of bone and joint surgery. British volume.

[230]  E. Haldane,et al.  PENICILLIN-TOLERANT STAPHYLOCOCCUS AUREUS , 1977, The Lancet.

[231]  M. Laverdière,et al.  A NEW TYPE OF PENICILLIN RESISTANCE OF STAPHYLOCOCCUS AUREUS , 1977, The Lancet.

[232]  G. K. Best,et al.  Evidence for Participation of Autolysins in Bactericidal Action of Oxacillin on Staphylococcus aureus , 1974, Antimicrobial Agents and Chemotherapy.

[233]  R. Peters,et al.  British anti-lewisite; its use and therapeutic value in arsenical intoxications. , 1947, Lancet.

[234]  J. Bigger TREATMENT OF STAPHYLOCOCCAL INFECTIONS WITH PENICILLIN BY INTERMITTENT STERILISATION , 1944 .