PTAS for Steiner Tree on Map Graphs

We study the Steiner tree problem on map graphs, which substantially generalize planar graphs as they allow arbitrarily large cliques. We obtain a PTAS for Steiner tree on map graphs, which builds on the result for planar edge weighted instances of Borradaile et al. The Steiner tree problem on map graphs can be casted as a special case of the planar node-weighted Steiner tree problem, for which only a 2.4-approximation is known. We prove and use a contraction decomposition theorem for planar node weighted instances. This readily reduces the problem of finding a PTAS for planar node-weighted Steiner tree to finding a spanner, i.e., a constant-factor approximation containing a nearly optimum solution. Finally, we pin-point places where known techniques for constructing such spanner fail on node weighted instances and further progress requires new ideas.

[1]  Philip N. Klein,et al.  Node-Weighted Steiner Tree and Group Steiner Tree in Planar Graphs , 2009, TALG.

[2]  Mohammad Taghi Hajiaghayi,et al.  Prize-collecting Steiner problems on planar graphs , 2011, SODA '11.

[3]  Sudipto Guha,et al.  Efficient recovery from power outage (extended abstract) , 1999, STOC '99.

[4]  Philip N. Klein,et al.  A Subset Spanner for Planar Graphs, with Application to Subset Tsp , 2022 .

[5]  Philip N. Klein,et al.  A polynomial-time approximation scheme for weighted planar graph TSP , 1998, SODA '98.

[6]  Markus Chimani,et al.  Improved Steiner Tree Algorithms for Bounded Treewidth , 2011, IWOCA.

[7]  Fabrizio Grandoni,et al.  Steiner Tree Approximation via Iterative Randomized Rounding , 2013, JACM.

[8]  Sergio Cabello,et al.  Simple PTAS's for families of graphs excluding a minor , 2014, Discret. Appl. Math..

[9]  R. Ravi,et al.  A nearly best-possible approximation algorithm for node-weighted Steiner trees , 1993, IPCO.

[10]  Mohammad Taghi Hajiaghayi,et al.  Polynomial-time Approximation Scheme for Minimum k-cut in Planar and Minor-free Graphs , 2019, SODA.

[11]  Erik D. Demaine,et al.  The Bidimensionality Theory and Its Algorithmic Applications , 2008, Comput. J..

[12]  David Eisenstat,et al.  An efficient polynomial-time approximation scheme for Steiner forest in planar graphs , 2012, SODA.

[13]  Zhi-Zhong Chen,et al.  Map graphs , 1999, JACM.

[14]  Piotr Berman,et al.  Primal-Dual Approximation Algorithms for Node-Weighted Network Design in Planar Graphs , 2012, APPROX-RANDOM.

[15]  Yiming Wang,et al.  Algorithms for node‐weighted Steiner tree and maximum‐weight connected subgraph , 2018, Networks.

[16]  Erik D. Demaine,et al.  A PTAS for planar group Steiner tree via spanner bootstrapping and prize collecting , 2016, STOC.

[17]  S. E. Dreyfus,et al.  The steiner problem in graphs , 1971, Networks.

[18]  Philip N. Klein,et al.  An O(n log n) approximation scheme for Steiner tree in planar graphs , 2009, TALG.

[19]  Philip N. Klein,et al.  Local Search Yields Approximation Schemes for k-Means and k-Median in Euclidean and Minor-Free Metrics , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[20]  Robert E. Tarjan,et al.  Applications of a planar separator theorem , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[21]  Philip N. Klein,et al.  A Linear-Time Approximation Scheme for TSP in Undirected Planar Graphs with Edge-Weights , 2008, SIAM J. Comput..

[22]  Brenda S. Baker,et al.  Approximation algorithms for NP-complete problems on planar graphs , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[23]  Carsten Moldenhauer,et al.  Primal-dual approximation algorithms for Node-Weighted Steiner Forest on planar graphs , 2011, Inf. Comput..

[24]  Frank Kammer,et al.  Approximate tree decompositions of planar graphs in linear time , 2011, Theor. Comput. Sci..

[25]  Mohammad Taghi Hajiaghayi,et al.  Approximation Schemes for Steiner Forest on Planar Graphs and Graphs of Bounded Treewidth , 2009, JACM.