Extracting Sharp Features from RGB‐D Images

Sharp edges are important shape features and their extraction has been extensively studied both on point clouds and surfaces. We consider the problem of extracting sharp edges from a sparse set of colour‐and‐depth (RGB‐D) images. The noise‐ridden depth measurements are challenging for existing feature extraction methods that work solely in the geometric domain (e.g. points or meshes). By utilizing both colour and depth information, we propose a novel feature extraction method that produces much cleaner and more coherent feature lines. We make two technical contributions. First, we show that intensity edges can augment the depth map to improve normal estimation and feature localization from a single RGB‐D image. Second, we designed a novel algorithm for consolidating feature points obtained from multiple RGB‐D images. By utilizing normals and ridge/valley types associated with the feature points, our algorithm is effective in suppressing noise without smearing nearby features.

[1]  Enkhbayar Altantsetseg,et al.  Feature line extraction from unorganized noisy point clouds using truncated Fourier series , 2013, The Visual Computer.

[2]  Daniel Cohen-Or,et al.  Bilateral mesh denoising , 2003 .

[3]  Dirk Roose,et al.  Detection of closed sharp edges in point clouds using normal estimation and graph theory , 2007, Comput. Aided Des..

[4]  Shi-Min Hu,et al.  3D indoor scene modeling from RGB-D data: a survey , 2015, Computational Visual Media.

[5]  Sun-Jeong Kim,et al.  Extraction of Ridges-Valleys for Feature-Preserving Simplification of Polygonal Models , 2006, International Conference on Computational Science.

[6]  Cláudio T. Silva,et al.  Robust Smooth Feature Extraction from Point Clouds , 2007, IEEE International Conference on Shape Modeling and Applications 2007 (SMI '07).

[7]  Tao Ju,et al.  A general and efficient method for finding cycles in 3D curve networks , 2013, ACM Trans. Graph..

[8]  Norbert Krüger,et al.  Object Detection Using a Combination of Multiple 3D Feature Descriptors , 2015, ICVS.

[9]  Konrad Polthier,et al.  Anisotropic Filtering of Non‐Linear Surface Features , 2004, Comput. Graph. Forum.

[10]  Daniel Cohen-Or,et al.  L1-medial skeleton of point cloud , 2013, ACM Trans. Graph..

[11]  Vladlen Koltun,et al.  Depth camera tracking with contour cues , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Hans-Peter Seidel,et al.  Fast and Faithful Geometric Algorithm for Detecting Crest Lines on Meshes , 2007, 15th Pacific Conference on Computer Graphics and Applications (PG'07).

[13]  Adam Finkelstein,et al.  Suggestive contours for conveying shape , 2003, ACM Trans. Graph..

[14]  Ilan Shimshoni,et al.  Demarcating curves for shape illustration , 2008, SIGGRAPH Asia '08.

[15]  Junjie Cao,et al.  Point Cloud Skeletons via Laplacian Based Contraction , 2010, 2010 Shape Modeling International Conference.

[16]  WangWenping,et al.  Denoising point sets via L 0 minimization , 2015 .

[17]  H. Seidel,et al.  Ridge-valley lines on meshes via implicit surface fitting , 2004, SIGGRAPH 2004.

[18]  Shuang Wang,et al.  RGB-D Hand-Held Object Recognition Based on Heterogeneous Feature Fusion , 2015, Journal of Computer Science and Technology.

[19]  Daniel Cohen-Or,et al.  Feature-aligned shape texturing , 2009, ACM Trans. Graph..

[20]  Marc Van Droogenbroeck,et al.  A new jump edge detection method for 3D cameras , 2011, 2011 International Conference on 3D Imaging (IC3D).

[21]  Hans-Peter Seidel,et al.  Fast and robust detection of crest lines on meshes , 2005, SPM '05.

[22]  Daniel Cohen-Or,et al.  Edge-aware point set resampling , 2013, ACM Trans. Graph..

[23]  Hans Hagen,et al.  Sharp feature detection in point clouds , 2010, 2010 Shape Modeling International Conference.

[24]  Daniel Cohen-Or,et al.  ℓ1-Sparse reconstruction of sharp point set surfaces , 2010, TOGS.

[25]  Youyi Zheng,et al.  IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1 Bilateral Normal Filtering for Mesh Denoising , 2022 .

[26]  Wenping Wang,et al.  Denoising point sets via L0 minimization , 2015, Comput. Aided Geom. Des..

[27]  Christoph S. Garbe,et al.  Depth and Intensity Based Edge Detection in Time-of-Flight Images , 2013, 2013 International Conference on 3D Vision.

[28]  Niloy J. Mitra,et al.  An Image Degradation Model for Depth‐augmented Image Editing , 2015, SGP '15.

[29]  Markus H. Gross,et al.  Multiresolution feature extraction for unstructured meshes , 2001, Proceedings Visualization, 2001. VIS '01..

[30]  Daniel Cohen-Or,et al.  Parameterization-free projection for geometry reconstruction , 2007, ACM Trans. Graph..

[31]  Niloy J. Mitra,et al.  Abstraction of man-made shapes , 2009, ACM Trans. Graph..

[32]  Daniel Cohen-Or,et al.  Consolidation of unorganized point clouds for surface reconstruction , 2009, ACM Trans. Graph..

[33]  Chang-Hun Kim,et al.  Finding ridges and valleys in a discrete surface using a modified MLS approximation , 2005, Comput. Aided Des..

[34]  Kok-Lim Low Linear Least-Squares Optimization for Point-to-Plane ICP Surface Registration , 2004 .

[35]  Ashish Myles,et al.  Extending Catmull-Clark Subdivision and PCCM with Polar Structures , 2007 .

[36]  Daniel Cohen-Or,et al.  iWIRES: an analyze-and-edit approach to shape manipulation , 2009, ACM Trans. Graph..

[37]  D. Cohen-Or,et al.  Robust moving least-squares fitting with sharp features , 2005, ACM Trans. Graph..

[38]  Stefan Gumhold,et al.  Feature Extraction From Point Clouds , 2001, IMR.

[39]  Lei He,et al.  Mesh denoising via L0 minimization , 2013, ACM Trans. Graph..

[40]  Henrik I. Christensen,et al.  RGB-D edge detection and edge-based registration , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[41]  Tony Lindeberg,et al.  Edge Detection and Ridge Detection with Automatic Scale Selection , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[42]  Markus H. Gross,et al.  Multi‐scale Feature Extraction on Point‐Sampled Surfaces , 2003, Comput. Graph. Forum.

[43]  Dieter Fox,et al.  RGB-D Mapping: Using Depth Cameras for Dense 3D Modeling of Indoor Environments , 2010, ISER.

[44]  Didier Stricker,et al.  CoRBS: Comprehensive RGB-D benchmark for SLAM using Kinect v2 , 2016, 2016 IEEE Winter Conference on Applications of Computer Vision (WACV).

[45]  Vladlen Koltun,et al.  Robust reconstruction of indoor scenes , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[46]  Konrad Polthier,et al.  Smooth feature lines on surface meshes , 2005, SGP '05.

[47]  Daniel Cohen-Or,et al.  Curve skeleton extraction from incomplete point cloud , 2009, ACM Trans. Graph..

[48]  Leonidas J. Guibas,et al.  Robust Voronoi-based curvature and feature estimation , 2009, Symposium on Solid and Physical Modeling.

[49]  Andrew W. Fitzgibbon,et al.  KinectFusion: Real-time dense surface mapping and tracking , 2011, 2011 10th IEEE International Symposium on Mixed and Augmented Reality.

[50]  Mathieu Desbrun,et al.  XOSKELETON : Curve Network Abstraction for 3 D Shapes , 2010 .

[51]  Pengbo Bo,et al.  Feature curve extraction from point clouds via developable strip intersection , 2016, J. Comput. Des. Eng..

[52]  Jaakko Lehtinen,et al.  A meshless hierarchical representation for light transport , 2008, ACM Trans. Graph..

[53]  Kang Chen,et al.  Automatic semantic modeling of indoor scenes from low-quality RGB-D data using contextual information , 2014, ACM Trans. Graph..

[54]  Mathieu Desbrun,et al.  Exoskeleton: Curve network abstraction for 3D shapes , 2011, Comput. Graph..

[55]  Hans-Peter Seidel,et al.  Ridge-valley lines on meshes via implicit surface fitting , 2004, ACM Trans. Graph..

[56]  Kouki Watanabe,et al.  Detection of Salient Curvature Features on Polygonal Surfaces , 2001, Comput. Graph. Forum.

[57]  Dong-Ming Yan,et al.  Patch layout generation by detecting feature networks , 2015, Comput. Graph..

[58]  Markus H. Gross,et al.  Feature Preserving Point Set Surfaces based on Non‐Linear Kernel Regression , 2009, Comput. Graph. Forum.