Direct solution of ill‐posed boundary value problems by radial basis function collocation method
暂无分享,去创建一个
[1] O. D. Kellogg. Foundations of potential theory , 1934 .
[2] J. Hadamard,et al. Le problème de Cauchy et les équations aux dérivées partielles linéaires hyperboliques : leçons professées à l'Université Yale , 1932 .
[3] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .
[4] R. Franke. Scattered data interpolation: tests of some methods , 1982 .
[5] M. M. Lavrentʹev,et al. Ill-Posed Problems of Mathematical Physics and Analysis , 1986 .
[6] E. Kansa. Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .
[7] Vladimir Maz’ya,et al. An iterative method for solving the Cauchy problem for elliptic equations , 1991 .
[8] Graeme Fairweather,et al. The method of fundamental solutions for elliptic boundary value problems , 1998, Adv. Comput. Math..
[9] Hans-Jürgen Reinhardt,et al. Stability and Regularization of a Discrete Approximation to the Cauchy Problem for Laplace's Equation , 1999 .
[10] Y. Hon,et al. A numerical computation for inverse boundary determination problem , 2000 .
[11] E. Kansa,et al. Exponential convergence and H‐c multiquadric collocation method for partial differential equations , 2003 .
[12] Benny Y. C. Hon,et al. Computation for MultiDimensional Cauchy Problem , 2003, SIAM J. Control. Optim..
[13] Derek B. Ingham,et al. Comparison of regularization methods for solving the Cauchy problem associated with the Helmholtz equation , 2004 .
[14] Jichun Li,et al. A radial basis meshless method for solving inverse boundary value problems , 2004 .