Linear vs. nonlinear algorithms for linear problems
暂无分享,去创建一个
[1] J. Lindenstrauss. On the extension property for compact operators , 1962 .
[2] P. Wojtaszczyk. Banach Spaces For Analysts: Preface , 1991 .
[3] V. Milman,et al. Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .
[4] G. Pisier. ASYMPTOTIC THEORY OF FINITE DIMENSIONAL NORMED SPACES (Lecture Notes in Mathematics 1200) , 1987 .
[5] E. Novak. Deterministic and Stochastic Error Bounds in Numerical Analysis , 1988 .
[6] H. Wozniakowski,et al. Are linear algorithms always good for linear problems? , 1986 .
[7] E. Packel. Linear problems (with extended range) have linear optimal algorithms , 1986 .
[8] J. Bowen,et al. s -numbers in information-based complexity , 1990 .
[9] H. Woxniakowski. Information-Based Complexity , 1988 .
[10] Y. Gordon,et al. Relations between some constants associated with finite dimensional Banach spaces , 1971 .
[11] Charles A. Micchelli,et al. A Survey of Optimal Recovery , 1977 .
[12] M. Zippin. Chapter 40 - Extension of Bounded Linear Operators , 2003 .
[13] T. J. Rivlin,et al. Optimal Estimation in Approximation Theory , 1977 .
[14] A. Pinkus. n-Widths in Approximation Theory , 1985 .
[15] B. Carl,et al. Entropy, Compactness and the Approximation of Operators , 1990 .
[16] D. R. Lewis. Finite dimensional subspaces of $L_{p}$ , 1978 .
[17] J. Lindenstrauss,et al. Handbook of geometry of Banach spaces , 2001 .
[18] N. Tomczak-Jaegermann. Banach-Mazur distances and finite-dimensional operator ideals , 1989 .