Growth of oriented single-crystalline rutile TiO(2) nanorods on transparent conducting substrates for dye-sensitized solar cells.

Dye-sensitized solar cells (DSSCs) made from oriented, one-dimensional semiconductor nanostructures such as nanorods, nanowires, and nanotubes are receiving attention because direct connection of the point of photogeneration with the collection electrode using such structures may improve the cell performance. Specifically, oriented single-crystalline TiO(2) nanorods or nanowires on a transparent conductive substrate would be most desirable, but achieving these structures has been limited by the availability of synthetic techniques. In this study, a facile, hydrothermal method was developed for the first time to grow oriented, single-crystalline rutile TiO(2) nanorod films on transparent conductive fluorine-doped tin oxide (FTO) substrates. The diameter, length, and density of the nanorods could be varied by changing the growth parameters, such as growth time, growth temperature, initial reactant concentration, acidity, and additives. The epitaxial relation between the FTO substrate and rutile TiO(2) with a small lattice mismatch plays a key role in driving the nucleation and growth of the rutile TiO(2) nanorods on FTO. With TiCl(4)-treatment, a light-to-electricity conversion efficiency of 3% could be achieved by using 4 mum-long TiO(2) nanorod films as the photoanode in a DSSC.

[1]  C. B. Carter,et al.  Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. , 2007, Nano letters.

[2]  B. O'Regan,et al.  Influence of a TiCl4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells. , 2006, The journal of physical chemistry. B.

[3]  S. Shaheen,et al.  Effect of ZnO Processing on the Photovoltage of ZnO/Poly(3-hexylthiophene) Solar Cells , 2008 .

[4]  M. Graetzel,et al.  Highly ordered SnO2 nanorod arrays from controlled aqueous growth. , 2004, Angewandte Chemie.

[5]  Anders Hagfeldt,et al.  A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes , 2002 .

[6]  Kai Zhu,et al.  Determining the locus for photocarrier recombination in dye-sensitized solar cells , 2002 .

[7]  Jin Zhai,et al.  The fabrication and switchable superhydrophobicity of TiO2 nanorod films. , 2005, Angewandte Chemie.

[8]  J. Wu,et al.  Formation and photoluminescence of single-crystalline rutile TiO2 nanowires synthesized by thermal evaporation , 2006 .

[9]  C. Howard,et al.  Structural and thermal parameters for rutile and anatase , 1991 .

[10]  F. Rueda,et al.  Preparation and characterization of sprayed FTO thin films , 2007 .

[11]  Craig A Grimes,et al.  Use of highly-ordered TiO(2) nanotube arrays in dye-sensitized solar cells. , 2006, Nano letters.

[12]  K. Wei,et al.  Synthesis of arrayed, TiO2 needlelike nanostructures via a polystyrene-block-poly(4-vinylpyridine) diblock copolymer template , 2004 .

[13]  Peidong Yang,et al.  ZnO-TiO2 Core-Shell Nanorod/P3HT Solar Cells , 2007 .

[14]  H. Zeng,et al.  Size-Controlled Growth of Co3O4 Nanocubes , 2003 .

[15]  H. Imai,et al.  {1 1 1}-faceting of low-temperature processed rutile TiO2 rods , 2006 .

[16]  Aleksandra Radenovic,et al.  ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells. , 2006, The journal of physical chemistry. B.

[17]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[18]  Eray S. Aydil,et al.  Nanowire-based dye-sensitized solar cells , 2005 .

[19]  H. Zeng,et al.  Mechanistic Investigation on Salt-Mediated Formation of Free-Standing Co3O4 Nanocubes at 95 °C , 2003 .

[20]  A. J. Frank,et al.  Characteristics of Low-Temperature Annealed TiO2 Films Deposited by Precipitation from Hydrolyzed TiCl4 Solutions , 2002 .

[21]  E. Aydil,et al.  Growth mechanism of titanium dioxide nanowires for dye-sensitized solar cells , 2008, Nanotechnology.

[22]  Huifang Xu,et al.  Large oriented arrays and continuous films of TiO(2)-based nanotubes. , 2003, Journal of the American Chemical Society.

[23]  Jih-Jen Wu,et al.  Aligned TiO2 Nanorods and Nanowalls , 2004 .

[24]  Tronc,et al.  Size Tailoring of Magnetite Particles Formed by Aqueous Precipitation: An Example of Thermodynamic Stability of Nanometric Oxide Particles. , 1998, Journal of colloid and interface science.

[25]  J. Wu,et al.  Synthesizing and Comparing the Photocatalytic Activities of Single-Crystalline TiO2 Rutile Nanowires and Mesoporous Anatase Paste , 2007 .

[26]  A. Korotcov,et al.  Growth and characterization of well-aligned densely-packed rutile TiO2 nanocrystals on sapphire substrates via metal–organic chemical vapor deposition , 2008, Nanotechnology.

[27]  Kazuhito Hashimoto,et al.  Efficient Charge Collection with ZnO Nanorod Array in Hybrid Photovoltaic Devices , 2007 .

[28]  Peidong Yang,et al.  General route to vertical ZnO nanowire arrays using textured ZnO seeds. , 2005, Nano letters.

[29]  A. J. Frank,et al.  Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells , 2000 .

[30]  Peidong Yang,et al.  Low-temperature wafer-scale production of ZnO nanowire arrays. , 2003, Angewandte Chemie.

[31]  Eray S. Aydil,et al.  Electron transport and recombination in polycrystalline TiO2 nanowire dye-sensitized solar cells , 2007 .

[32]  E. Aydil,et al.  Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells , 2006 .

[33]  Peidong Yang,et al.  Nanowire dye-sensitized solar cells , 2005, Nature materials.

[34]  Tae‐Woo Lee,et al.  Growth, detachment and transfer of highly-ordered TiO2 nanotube arrays: use in dye-sensitized solar cells. , 2008, Chemical communications.

[35]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[36]  Kai Zhu,et al.  Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. , 2007, Nano letters.

[37]  C. Grimes,et al.  Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. , 2008, Nano letters.

[38]  H. Imai,et al.  Growth of submicrometer-scale rectangular parallelepiped rutile TiO2 films in aqueous TiCl3 solutions under hydrothermal conditions. , 2004, Journal of the American Chemical Society.

[39]  Tsukasa Yoshida,et al.  Low‐Temperature Fabrication of Efficient Porous Titania Photoelectrodes by Hydrothermal Crystallization at the Solid/Gas Interface , 2003 .

[40]  Michael Dürr,et al.  Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers , 2005, Nature materials.

[41]  Peidong Yang,et al.  Solution-grown zinc oxide nanowires. , 2006, Inorganic chemistry.