The vector-host epidemic model with multiple strains in a patchy environment

[1]  D. Gubler The Global Threat of Emergent/Re-emergent Vector-Borne Diseases , 2010, Vector Biology, Ecology and Control.

[2]  P. Atkinson,et al.  Vector biology, ecology and control , 2010 .

[3]  C. Cosner,et al.  The effects of human movement on the persistence of vector-borne diseases. , 2009, Journal of theoretical biology.

[4]  P. Auger,et al.  The Ross-Macdonald model in a patchy environment. , 2008, Mathematical biosciences.

[5]  N. Day,et al.  Spread of anti-malarial drug resistance: Mathematical model with implications for ACT drug policies , 2008, Malaria Journal.

[6]  Thanate Dhirasakdanon,et al.  A sharp threshold for disease persistence in host metapopulations , 2007, Journal of biological dynamics.

[7]  Julien Arino,et al.  Quarantine in a multi-species epidemic model with spatial dynamics. , 2007, Mathematical biosciences.

[8]  Xuezhi Li,et al.  Subthreshold coexistence of strains: the impact of vaccination and mutation. , 2007, Mathematical biosciences and engineering : MBE.

[9]  H. Thieme,et al.  Persistence of vertically transmitted parasite strains which protect against more virulent horizontally transmitted strains , 2007 .

[10]  Sergei S. Pilyugin,et al.  The Role of Coinfection in Multidisease Dynamics , 2006, SIAM J. Appl. Math..

[11]  F. Moore,et al.  Migrating Birds as Dispersal Vehicles for West Nile Virus , 2006, EcoHealth.

[12]  S. Pilyugin,et al.  THE ROLE OF COINFECTION IN MULTI-DISEASE DYNAMICS , 2006 .

[13]  Mimmo Iannelli,et al.  Strain replacement in an epidemic model with super-infection and perfect vaccination. , 2005, Mathematical biosciences.

[14]  Xiao-Qiang Zhao,et al.  An Age-Structured Epidemic Model in a Patchy Environment , 2005, SIAM J. Appl. Math..

[15]  Xiao-Qiang Zhao,et al.  An epidemic model in a patchy environment. , 2004, Mathematical biosciences.

[16]  Marjorie J. Wonham,et al.  An epidemiological model for West Nile virus: invasion analysis and control applications , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[17]  Wendi Wang,et al.  Threshold of disease transmission in a patch environment , 2003 .

[18]  J. Rappole,et al.  Migratory birds and West Nile virus , 2003, Journal of applied microbiology.

[19]  J. Arino,et al.  A multi-city epidemic model , 2003 .

[20]  Julien Arino,et al.  The Basic Reproduction Number in a Multi-city Compartmental Epidemic Model , 2003, POSTA.

[21]  Xiao-Qiang Zhao,et al.  Dynamical systems in population biology , 2003 .

[22]  J. Watmough,et al.  Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. , 2002, Mathematical biosciences.

[23]  Alan Hastings,et al.  Mathematical Models in Population Biology and Epidemiology.Texts in Applied Mathematics, Volume 40.ByFred Brauerand, Carlos Castillo‐Chávez.New York: Springer. $59.95. xxiii + 416 p; ill.; index. ISBN: 0–387–98902–1. 2001. , 2002 .

[24]  Horst R. Thieme,et al.  Stable Coexistence and Bi-stability for Competitive Systems on Ordered Banach Spaces , 2001 .

[25]  C. Castillo-Chavez,et al.  Dispersal, disease and life-history evolution. , 2001, Mathematical biosciences.

[26]  Herbert W. Hethcote,et al.  The Mathematics of Infectious Diseases , 2000, SIAM Rev..

[27]  O. Diekmann,et al.  Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation , 2000 .

[28]  J. Velasco-Hernández,et al.  Competitive exclusion in a vector-host model for the dengue fever , 1997, Journal of mathematical biology.

[29]  Carlos Castillo-Chavez,et al.  Competitive Exclusion in Gonorrhea Models and Other Sexually Transmitted Diseases , 1996, SIAM J. Appl. Math..

[30]  O. Diekmann Mathematical Epidemiology of Infectious Diseases , 1996 .

[31]  V Andreasen,et al.  Pathogen coexistence induced by density-dependent host mortality. , 1995, Journal of theoretical biology.

[32]  Carlos Castillo-Chavez,et al.  Dynamics of Multiple Pathogen Strains in Heterosexual Epidemiological Models , 1995 .

[33]  Hal L. Smith,et al.  Monotone Dynamical Systems: An Introduction To The Theory Of Competitive And Cooperative Systems (Mathematical Surveys And Monographs) By Hal L. Smith , 1995 .

[34]  Martin A. Nowak,et al.  Coinfection and the evolution of parasite virulence , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[35]  Carlos Castillo-Chavez,et al.  Asymptotically Autonomous Epidemic Models , 1994 .

[36]  Martin A. Nowak,et al.  Superinfection and the evolution of parasite virulence , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[37]  Horst R. Thieme,et al.  Asymptotically Autonomous Differential Equations in the Plane , 1993 .

[38]  Horst R. Thieme,et al.  Persistence under relaxed point-dissipativity (with application to an endemic model) , 1993 .

[39]  Horst R. Thieme,et al.  Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations , 1992 .

[40]  D. W. Lewis Matrix theory , 1991 .

[41]  S. Levin,et al.  Epidemiological models with age structure, proportionate mixing, and cross-immunity , 1989, Journal of mathematical biology.

[42]  H J Bremermann,et al.  A competitive exclusion principle for pathogen virulence , 1989, Journal of mathematical biology.

[43]  Hal L. Smith Cooperative systems of differential equations with concave nonlinearities , 1986 .

[44]  R. Golden,et al.  Analytic representation of the proton-proton and proton-nucleus cross-sections and its application to the sea-level spectrum and charge ratio of muons , 1977 .

[45]  O. C. Allkofer,et al.  The muon charge ratio at sea level in the low momentum region , 1972 .

[46]  A. Wolfendale,et al.  The absolute vertical cosmic-ray muon intensity at sea level , 1972 .

[47]  O. C. Allkofer,et al.  The absolute cosmic ray muon spectrum at sea level , 1971 .

[48]  S. Levin Community Equilibria and Stability, and an Extension of the Competitive Exclusion Principle , 1970, The American Naturalist.

[49]  E O Powell,et al.  Theory of the chemostat. , 1965, Laboratory practice.

[50]  A. L.,et al.  Spatial Heterogeneity in Epidemic Models , 2022 .