Objective Priors: An Introduction for Frequentists

Bayesian methods are increasingly applied in these days in the theory and practice of statistics. Any Bayesian inference depends on a likelihood and a prior. Ideally one would like to elicit a prior from related sources of information or past data. However, in its absence, Bayesian methods need to rely on some "objective" or "default" priors, and the resulting posterior inference can still be quite valuable. Not surprisingly, over the years, the catalog of objective priors also has become prohibitively large, and one has to set some specific criteria for the selection of such priors. Our aim is to review some of these criteria, compare their performance, and illustrate them with some simple examples. While for very large sample sizes, it does not possibly matter what objective prior one uses, the selection of such a prior does influence inference for small or moderate samples. For regular models where asymptotic normality holds, Jeffreys' general rule prior, the positive square root of the determinant of the Fisher information matrix, enjoys many optimality properties in the absence of nuisance parameters. In the presence of nuisance parameters, however, there are many other priors which emerge as optimal depending on the criterion selected. One new feature in this article is that a prior different from Jeffreys' is shown to be optimal under the chi-square divergence criterion even in the absence of nuisance parameters. The latter is also invariant under one-to-one reparameterization.

[1]  A. Bhattacharyya On a measure of divergence between two statistical populations defined by their probability distributions , 1943 .

[2]  Richard A. Johnson Asymptotic Expansions Associated with Posterior Distributions , 1970 .

[3]  D. Dey,et al.  Frequentist validity of posterior quantiles in the presence of a nuisance parameter : higher order asymptotics , 1993 .

[4]  S. Ghosal,et al.  Reference priors in multiparameter nonregular cases , 1997 .

[5]  Jayanta K. Ghosh,et al.  On priors providing frequentist validity for Bayesian inference , 1995 .

[6]  S. Ghosal Probability matching priors for non-regular cases. , 1999 .

[7]  Malay Ghosh,et al.  Bayesian prediction with approximate frequentist validity , 2000 .

[8]  J. Bernardo Reference Analysis , 2005 .

[9]  A. Barron,et al.  Jeffreys' prior is asymptotically least favorable under entropy risk , 1994 .

[10]  P. Laplace Théorie analytique des probabilités , 1995 .

[11]  Nancy Reid,et al.  Strong matching of frequentist and Bayesian parametric inference , 2002 .

[12]  T. Ferguson A Course in Large Sample Theory , 1996 .

[13]  M. Ghosh,et al.  A general divergence criterion for prior selection , 2011 .

[14]  James O. Berger,et al.  Reference Priors in a Variance Components Problem , 1992 .

[15]  Timothy R. C. Read,et al.  Multinomial goodness-of-fit tests , 1984 .

[16]  Trevor J. Sweeting,et al.  Probability matching priors , 2004 .

[17]  M. Ghosh,et al.  Probability Matching Priors For One-Way Unbalanced Random Effect Models , 2002 .

[18]  M. Ghosh,et al.  Default Bayesian Priors for Regression Models with First‐Order Autoregressive Residuals , 2003 .

[19]  G. Datta On priors providing frequentist validity of Bayesian inference for multiple parametric functions , 1996 .

[20]  R. Mukerjee,et al.  Probability Matching Priors: Higher Order Asymptotics , 2004 .

[21]  M. Ghosh,et al.  Moment matching priors , 2011 .

[22]  V. S. Huzurbazar Probability distributions and orthogonal parameters , 1950, Mathematical Proceedings of the Cambridge Philosophical Society.

[23]  James O. Berger,et al.  Noninformative Priors and Bayesian Testing for the AR(1) Model , 1994, Econometric Theory.

[24]  James O. Berger Statistical Decision Theory , 1980 .

[25]  M. Ghosh,et al.  Second-order probability matching priors , 1997 .

[26]  James O. Berger,et al.  Estimating a Product of Means: Bayesian Analysis with Reference Priors , 1989 .

[27]  J. Bernardo,et al.  THE FORMAL DEFINITION OF REFERENCE PRIORS , 2009, 0904.0156.

[28]  M. Ghosh,et al.  Some new Results on Probability Matching Priors , 2000 .

[29]  D. Lindley On a Measure of the Information Provided by an Experiment , 1956 .

[30]  Malay Ghosh,et al.  Some remarks on noninformative priors , 1995 .

[31]  T. Bayes An essay towards solving a problem in the doctrine of chances , 2003 .

[32]  L. Wasserman,et al.  The Selection of Prior Distributions by Formal Rules , 1996 .

[33]  D. Cox,et al.  Parameter Orthogonality and Approximate Conditional Inference , 1987 .

[34]  Andrew R. Barron,et al.  Information-theoretic asymptotics of Bayes methods , 1990, IEEE Trans. Inf. Theory.

[35]  M. Ghosh,et al.  On an exact probability matching property of right-invariant priors , 2002 .

[36]  Malay Ghosh,et al.  ON THE INVARIANCE OF NONINFORMATIVE PRIORS , 1996 .

[37]  M. Ghosh,et al.  OBJECTIVE BAYESIAN INFERENCE FOR RATIOS OF REGRESSION COEFFICIENTS IN LINEAR MODELS , 2003 .

[38]  R. Tibshirani Noninformative priors for one parameter of many , 1989 .

[39]  Bertrand Clarke,et al.  Asymptotics of the Expected Posterior , 1999 .

[40]  B. L. Welch,et al.  On Formulae for Confidence Points Based on Integrals of Weighted Likelihoods , 1963 .

[41]  Bayesian reference prior analysis on the ratio of variances for the balanced one-way random effect model , 1994 .

[42]  M. Ghosh,et al.  Hierarchical Bayes estimators of the error variance in one-way ANOVA models , 1995 .

[43]  J. Hartigan The maximum likelihood prior , 1998 .

[44]  E. Hellinger,et al.  Neue Begründung der Theorie quadratischer Formen von unendlichvielen Veränderlichen. , 1909 .

[45]  Bradley P. Carlin,et al.  Probability matching priors for linear calibration , 1995 .

[46]  J. Berger,et al.  Objective Bayesian Analysis of Spatially Correlated Data , 2001 .

[47]  Creasy Problem,et al.  Reference Posterior Distributions for Bayesian Inference , 1979 .

[48]  Peter J. Bickel,et al.  A Decomposition for the Likelihood Ratio Statistic and the Bartlett Correction--A Bayesian Argument , 1990 .

[49]  L. Nachbin,et al.  The Haar integral , 1965 .

[50]  S. Amari Differential Geometry of Curved Exponential Families-Curvatures and Information Loss , 1982 .