Objective Priors: An Introduction for Frequentists
暂无分享,去创建一个
[1] A. Bhattacharyya. On a measure of divergence between two statistical populations defined by their probability distributions , 1943 .
[2] Richard A. Johnson. Asymptotic Expansions Associated with Posterior Distributions , 1970 .
[3] D. Dey,et al. Frequentist validity of posterior quantiles in the presence of a nuisance parameter : higher order asymptotics , 1993 .
[4] S. Ghosal,et al. Reference priors in multiparameter nonregular cases , 1997 .
[5] Jayanta K. Ghosh,et al. On priors providing frequentist validity for Bayesian inference , 1995 .
[6] S. Ghosal. Probability matching priors for non-regular cases. , 1999 .
[7] Malay Ghosh,et al. Bayesian prediction with approximate frequentist validity , 2000 .
[8] J. Bernardo. Reference Analysis , 2005 .
[9] A. Barron,et al. Jeffreys' prior is asymptotically least favorable under entropy risk , 1994 .
[10] P. Laplace. Théorie analytique des probabilités , 1995 .
[11] Nancy Reid,et al. Strong matching of frequentist and Bayesian parametric inference , 2002 .
[12] T. Ferguson. A Course in Large Sample Theory , 1996 .
[13] M. Ghosh,et al. A general divergence criterion for prior selection , 2011 .
[14] James O. Berger,et al. Reference Priors in a Variance Components Problem , 1992 .
[15] Timothy R. C. Read,et al. Multinomial goodness-of-fit tests , 1984 .
[16] Trevor J. Sweeting,et al. Probability matching priors , 2004 .
[17] M. Ghosh,et al. Probability Matching Priors For One-Way Unbalanced Random Effect Models , 2002 .
[18] M. Ghosh,et al. Default Bayesian Priors for Regression Models with First‐Order Autoregressive Residuals , 2003 .
[19] G. Datta. On priors providing frequentist validity of Bayesian inference for multiple parametric functions , 1996 .
[20] R. Mukerjee,et al. Probability Matching Priors: Higher Order Asymptotics , 2004 .
[21] M. Ghosh,et al. Moment matching priors , 2011 .
[22] V. S. Huzurbazar. Probability distributions and orthogonal parameters , 1950, Mathematical Proceedings of the Cambridge Philosophical Society.
[23] James O. Berger,et al. Noninformative Priors and Bayesian Testing for the AR(1) Model , 1994, Econometric Theory.
[24] James O. Berger. Statistical Decision Theory , 1980 .
[25] M. Ghosh,et al. Second-order probability matching priors , 1997 .
[26] James O. Berger,et al. Estimating a Product of Means: Bayesian Analysis with Reference Priors , 1989 .
[27] J. Bernardo,et al. THE FORMAL DEFINITION OF REFERENCE PRIORS , 2009, 0904.0156.
[28] M. Ghosh,et al. Some new Results on Probability Matching Priors , 2000 .
[29] D. Lindley. On a Measure of the Information Provided by an Experiment , 1956 .
[30] Malay Ghosh,et al. Some remarks on noninformative priors , 1995 .
[31] T. Bayes. An essay towards solving a problem in the doctrine of chances , 2003 .
[32] L. Wasserman,et al. The Selection of Prior Distributions by Formal Rules , 1996 .
[33] D. Cox,et al. Parameter Orthogonality and Approximate Conditional Inference , 1987 .
[34] Andrew R. Barron,et al. Information-theoretic asymptotics of Bayes methods , 1990, IEEE Trans. Inf. Theory.
[35] M. Ghosh,et al. On an exact probability matching property of right-invariant priors , 2002 .
[36] Malay Ghosh,et al. ON THE INVARIANCE OF NONINFORMATIVE PRIORS , 1996 .
[37] M. Ghosh,et al. OBJECTIVE BAYESIAN INFERENCE FOR RATIOS OF REGRESSION COEFFICIENTS IN LINEAR MODELS , 2003 .
[38] R. Tibshirani. Noninformative priors for one parameter of many , 1989 .
[39] Bertrand Clarke,et al. Asymptotics of the Expected Posterior , 1999 .
[40] B. L. Welch,et al. On Formulae for Confidence Points Based on Integrals of Weighted Likelihoods , 1963 .
[41] Bayesian reference prior analysis on the ratio of variances for the balanced one-way random effect model , 1994 .
[42] M. Ghosh,et al. Hierarchical Bayes estimators of the error variance in one-way ANOVA models , 1995 .
[43] J. Hartigan. The maximum likelihood prior , 1998 .
[44] E. Hellinger,et al. Neue Begründung der Theorie quadratischer Formen von unendlichvielen Veränderlichen. , 1909 .
[45] Bradley P. Carlin,et al. Probability matching priors for linear calibration , 1995 .
[46] J. Berger,et al. Objective Bayesian Analysis of Spatially Correlated Data , 2001 .
[47] Creasy Problem,et al. Reference Posterior Distributions for Bayesian Inference , 1979 .
[48] Peter J. Bickel,et al. A Decomposition for the Likelihood Ratio Statistic and the Bartlett Correction--A Bayesian Argument , 1990 .
[49] L. Nachbin,et al. The Haar integral , 1965 .
[50] S. Amari. Differential Geometry of Curved Exponential Families-Curvatures and Information Loss , 1982 .