Big Bang-Big Crunch optimization for parameter estimation in structural systems

Abstract A new approach to parameter estimation of structural systems using the recently developed Big Bang-Big Crunch (BB-BC) optimization is proposed, in which the parameter estimation is formulated as a multi-modal optimization problem with high dimension. The BB-BC method is inspired by one of the theories of the evolution of universe. The potentialities of BB-BC are its inherent numerical simplicity, high convergence speed, and easy implementation. The performances of the proposed method are investigated with simulation results for identifying the parameters of structural systems under conditions including limited output data, noise-polluted signals, and no priori knowledge of mass, damping, or stiffness. It is observed that BB-BC gives comparatively better results than existing methods. Moreover the method is computationally simpler.

[1]  Charles V. Camp DESIGN OF SPACE TRUSSES USING BIG BANG–BIG CRUNCH OPTIMIZATION , 2007 .

[2]  Chan Ghee Koh,et al.  Structural Identification and Damage Detection using Genetic Algorithms , 2010 .

[3]  T. Kumbasar,et al.  Inverse fuzzy Model Control with online adaptation via Big Bang-Big Crunch optimization , 2008, 2008 3rd International Symposium on Communications, Control and Signal Processing.

[4]  El-Ghazali Talbi,et al.  Metaheuristics - From Design to Implementation , 2009 .

[5]  Ibrahim Eksin,et al.  A new optimization method: Big Bang-Big Crunch , 2006, Adv. Eng. Softw..

[6]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[7]  Chan Ghee Koh,et al.  A hybrid computational strategy for identification of structural parameters , 2003 .

[8]  He-sheng Tang,et al.  Differential evolution strategy for structural system identification , 2008 .

[9]  Nicholas A J Lieven,et al.  DYNAMIC FINITE ELEMENT MODEL UPDATING USING SIMULATED ANNEALING AND GENETIC ALGORITHMS , 1997 .

[10]  Chan Ghee Koh,et al.  STRUCTURAL DAMAGE QUANTIFICATION BY SYSTEM IDENTIFICATION , 2007 .

[11]  Jamshid Ghaboussi,et al.  Genetic algorithm in structural damage detection , 2001 .

[12]  Renato Barbieri,et al.  Parameters estimation of sandwich beam model with rigid polyurethane foam core , 2010 .

[13]  W. Zhang,et al.  Parameter estimation using a CLPSO strategy , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[14]  Raimondo Betti,et al.  Identification of Structural Systems using an Evolutionary Strategy , 2004 .

[15]  A. Kaveh,et al.  Size optimization of space trusses using Big Bang-Big Crunch algorithm , 2009 .

[16]  Leandro Nunes de Castro,et al.  Fundamentals of natural computing: an overview , 2007 .

[17]  Ju-Jang Lee,et al.  Adaptive simulated annealing genetic algorithm for system identification , 1996 .

[18]  H.M. Genc,et al.  Bearing-Only Target Tracking Based on Big Bang – Big Crunch Algorithm , 2008, 2008 The Third International Multi-Conference on Computing in the Global Information Technology (iccgi 2008).

[19]  Grace S. Wang Application of hybrid genetic algorithm to system identification , 2009 .

[20]  Scott Cogan,et al.  Application of genetic algorithms for the identification of elastic constants of composite materials from dynamic tests , 1999 .

[21]  Chan Ghee Koh,et al.  Modified genetic algorithm strategy for structural identification , 2006 .