One-power-point operation for variable speed wind/tidal stream turbines with synchronous generators

This study presents a new operating scheme for variable speed wind/tidal stream turbines employing synchronous generators. Current maximum power tracking schemes for variable speed wind energy conversion systems rely on periodic comparison of the output power for guiding the direction of maximum power tracking or an online algorithm which continuously provides a generator torque/speed reference corresponding to the maximum power status at different wind speed conditions. The proposed scheme utilises only one-power-point on the maximum power curve. Once the information for the maximum power status of a local wind speed is known, then the wind energy conversion system implements maximum power tracking and constant power control for different wind speed conditions using simple control. The operation strategy is applicable to tidal stream turbines. Simulation results demonstrate the concept.

[1]  Kostas Kalaitzakis,et al.  Design of a maximum power tracking system for wind-energy-conversion applications , 2006, IEEE Transactions on Industrial Electronics.

[2]  L.F. Ochoa,et al.  Time-series based maximization of distributed wind power generation integration , 2012 .

[3]  Ervin Bossanyi,et al.  Wind Energy Handbook , 2001 .

[4]  Yongzheng Zhang,et al.  Sensorless Maximum Power Point Tracking of Wind by DFIG Using Rotor Position Phase Lock Loop (PLL) , 2009, IEEE Transactions on Power Electronics.

[5]  Dong-Choon Lee,et al.  MPPT Control of Wind Generation Systems Based on Estimated Wind Speed Using SVR , 2008, IEEE Transactions on Industrial Electronics.

[6]  A.M. Knight,et al.  Simple wind energy controller for an expanded operating range , 2005, IEEE Transactions on Energy Conversion.

[7]  Jan T. Bialasiewicz,et al.  Power-Electronic Systems for the Grid Integration of Renewable Energy Sources: A Survey , 2006, IEEE Transactions on Industrial Electronics.

[8]  M. Chinchilla,et al.  Control of permanent-magnet generators applied to variable-speed wind-energy systems connected to the grid , 2006, IEEE Transactions on Energy Conversion.

[9]  Ervin Bossanyi,et al.  Handbook of wind energy , 2001 .

[10]  Yung-Ruei Chang,et al.  Novel maximum-power-extraction algorithm for PMSG wind generation system , 2007 .

[11]  R.G. Harley,et al.  Wind Speed Estimation Based Sensorless Output Maximization Control for a Wind Turbine Driving a DFIG , 2008, IEEE Transactions on Power Electronics.

[12]  Zhe Chen,et al.  A Review of the State of the Art of Power Electronics for Wind Turbines , 2009, IEEE Transactions on Power Electronics.

[13]  R. Iravani,et al.  A neutral-point clamped converter system for direct-drive variable-speed wind power unit , 2006, IEEE Transactions on Energy Conversion.

[14]  M.E.H. Benbouzid,et al.  Sliding Mode Power Control of Variable Speed Wind Energy Conversion Systems , 2008, 2007 IEEE International Electric Machines & Drives Conference.

[15]  Mohamed Benbouzid,et al.  Modelling and control of a marine current turbine-driven doubly fed induction generator , 2010 .

[16]  Liuchen Chang,et al.  An intelligent maximum power extraction algorithm for inverter-based variable speed wind turbine systems , 2004 .

[17]  B. Fox,et al.  Impact of tidal generation on power system operation in Ireland , 2005, IEEE Transactions on Power Systems.

[18]  Quincy Qing Wang,et al.  Maximum wind energy extraction strategies using power electronic converters , 2003 .

[19]  F. Valenciaga,et al.  High-Order Sliding Control for a Wind Energy Conversion System Based on a Permanent Magnet Synchronous Generator , 2008, IEEE Transactions on Energy Conversion.

[20]  Mohamed El Hachemi Benbouzid,et al.  High-Order Sliding-Mode Control of Variable-Speed Wind Turbines , 2009, IEEE Transactions on Industrial Electronics.

[21]  Anjan Bose,et al.  Stability Simulation Of Wind Turbine Systems , 1983, IEEE Transactions on Power Apparatus and Systems.