Realizing all-to-all couplings among detachable quantum modules using a microwave quantum state router

[1]  M. Hatridge,et al.  Co-Designed Architectures for Modular Superconducting Quantum Computers , 2022, 2023 IEEE International Symposium on High-Performance Computer Architecture (HPCA).

[2]  T. Duty,et al.  Degenerate Parametric Amplification via Three-Wave Mixing Using Kinetic Inductance , 2022, Physical Review Applied.

[3]  Kaitlin N. Smith,et al.  Modeling Short-Range Microwave Networks to Scale Superconducting Quantum Computation , 2022, 2201.08825.

[4]  A. Bhattacharjee,et al.  Ring-Resonator-Based Coupling Architecture for Enhanced Connectivity in a Superconducting Multiqubit Network , 2021, Physical Review Applied.

[5]  Daniel A. Lidar,et al.  Calibration of flux crosstalk in large-scale flux-tunable superconducting quantum circuits , 2021, 2105.14360.

[6]  H. Neven,et al.  Resolving catastrophic error bursts from cosmic rays in large arrays of superconducting qubits , 2021, Nature Physics.

[7]  T. Sugiyama,et al.  Fast parametric two-qubit gates with suppressed residual interaction using the second-order nonlinearity of a cubic transmon , 2020 .

[8]  Kavli Institute for Cosmological Physics,et al.  Correlated charge noise and relaxation errors in superconducting qubits , 2020, Nature.

[9]  D. Schuster,et al.  Deterministic multi-qubit entanglement in a quantum network , 2020, Nature.

[10]  A. Greene,et al.  Realization of High-Fidelity CZ and ZZ -Free iSWAP Gates with a Tunable Coupler , 2020, 2011.01261.

[11]  M. Devoret,et al.  Energy-participation quantization of Josephson circuits , 2020, npj Quantum Information.

[12]  A. Blais,et al.  Microwave Quantum Link between Superconducting Circuits Housed in Spatially Separated Cryogenic Systems. , 2020, Physical review letters.

[13]  C. K. Andersen,et al.  Benchmarking Coherent Errors in Controlled-Phase Gates due to Spectator Qubits , 2020, 2005.05914.

[14]  Luke D. Burkhart,et al.  Error-Detected State Transfer and Entanglement in a Superconducting Quantum Network , 2020, PRX Quantum.

[15]  A. Houck,et al.  New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds , 2020, Nature Communications.

[16]  Jian-Wei Pan,et al.  Entanglement of two quantum memories via fibres over dozens of kilometres , 2020, Nature.

[17]  L. Frunzio,et al.  High coherence superconducting microwave cavities with indium bump bonding , 2020, Applied Physics Letters.

[18]  M. Hatridge,et al.  Optimizing Josephson-ring-modulator-based Josephson parametric amplifiers via full Hamiltonian control , 2019, Physical Review A.

[19]  John C. Platt,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[20]  K. Brown,et al.  Real-time calibration with spectator qubits , 2019, npj Quantum Information.

[21]  M. Devoret,et al.  Kerr-Free Three-Wave Mixing in Superconducting Quantum Circuits , 2019, Physical Review Applied.

[22]  Yao Lu,et al.  Deterministic bidirectional communication and remote entanglement generation between superconducting qubits , 2019, npj Quantum Information.

[23]  Alexandre Blais,et al.  Quantum Communication with Time-Bin Encoded Microwave Photons , 2018, Physical Review Applied.

[24]  K. Murch,et al.  Understanding the Saturation Power of Josephson Parametric Amplifiers Made from SQUID Arrays , 2018, Physical Review Applied.

[25]  M. Devoret,et al.  Optimizing the Nonlinearity and Dissipation of a SNAIL Parametric Amplifier for Dynamic Range , 2018, Physical Review Applied.

[26]  Marijn A. M. Versteegh,et al.  Entanglement distribution over a 96-km-long submarine optical fiber , 2018, Proceedings of the National Academy of Sciences.

[27]  Liang Jiang,et al.  Programmable Interference between Two Microwave Quantum Memories , 2018, Physical Review X.

[28]  A. Blais,et al.  Deterministic quantum state transfer and remote entanglement using microwave photons , 2017, Nature.

[29]  L. DiCarlo,et al.  Chip-to-chip entanglement of transmon qubits using engineered measurement fields , 2017, 1712.06141.

[30]  Luke D. Burkhart,et al.  Deterministic Remote Entanglement of Superconducting Circuits through Microwave Two-Photon Transitions. , 2017, Physical review letters.

[31]  Liang Jiang,et al.  On-demand quantum state transfer and entanglement between remote microwave cavity memories , 2017, 1712.05832.

[32]  Dmitri Maslov,et al.  Experimental comparison of two quantum computing architectures , 2017, Proceedings of the National Academy of Sciences.

[33]  A. Narla,et al.  3-Wave Mixing Josephson Dipole Element , 2017, 1702.00869.

[34]  Liang Jiang,et al.  Controlled release of multiphoton quantum states from a microwave cavity memory , 2016, Nature Physics.

[35]  L. Ranzani,et al.  Nonreciprocal Microwave Signal Processing with a Field-Programmable Josephson Amplifier. , 2016, Physical review applied.

[36]  Jay M. Gambetta,et al.  Universal Gate for Fixed-Frequency Qubits via a Tunable Bus , 2016, 1604.03076.

[37]  E. Zalys-Geller,et al.  Robust concurrent remote entanglement between two superconducting qubits , 2016, 1603.03742.

[38]  Liang Jiang,et al.  New class of quantum error-correcting codes for a bosonic mode , 2016, 1602.00008.

[39]  Yvonne Y Gao,et al.  A Schrödinger cat living in two boxes , 2016, Science.

[40]  Liang Jiang,et al.  Quantum memory with millisecond coherence in circuit QED , 2015, 1508.05882.

[41]  L. Ranzani,et al.  Coherent-state storage and retrieval between superconducting cavities using parametric frequency conversion , 2015, 1503.02571.

[42]  R. J. Schoelkopf,et al.  Reconfigurable Josephson Circulator/Directional Amplifier , 2015, 1503.00209.

[43]  R. Barends,et al.  Optimal quantum control using randomized benchmarking. , 2014, Physical review letters.

[44]  K. B. Whaley,et al.  Supplementary Information for " Observation of measurement-induced entanglement and quantum trajectories of remote superconducting qubits " , 2014 .

[45]  S. Girvin,et al.  Deterministically Encoding Quantum Information Using 100-Photon Schrödinger Cat States , 2013, Science.

[46]  C. Monroe,et al.  Scaling the Ion Trap Quantum Processor , 2013, Science.

[47]  M. Markham,et al.  Heralded entanglement between solid-state qubits separated by three metres , 2012, Nature.

[48]  Peter Young,et al.  Everything you wanted to know about Data Analysis and Fitting but were afraid to ask , 2012, 1210.3781.

[49]  C. Monroe,et al.  Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects , 2012, 1208.0391.

[50]  H. Weinfurter,et al.  Heralded Entanglement Between Widely Separated Atoms , 2012, Science.

[51]  Luigi Frunzio,et al.  Black-box superconducting circuit quantization. , 2012, Physical review letters.

[52]  G. Rempe,et al.  An elementary quantum network of single atoms in optical cavities , 2012, Nature.

[53]  Franco Nori,et al.  QuTiP: An open-source Python framework for the dynamics of open quantum systems , 2011, Comput. Phys. Commun..

[54]  M Weides,et al.  Fast tunable coupler for superconducting qubits. , 2011, Physical review letters.

[55]  J M Gambetta,et al.  Simple pulses for elimination of leakage in weakly nonlinear qubits. , 2009, Physical review letters.

[56]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[57]  R. J. Schoelkopf,et al.  Analog information processing at the quantum limit with a Josephson ring modulator , 2008, 0805.3452.

[58]  D. Matsukevich,et al.  Entanglement of single-atom quantum bits at a distance , 2007, Nature.

[59]  S. Girvin,et al.  Resolving photon number states in a superconducting circuit , 2006, Nature.

[60]  H. Kimble,et al.  Measurement-induced entanglement for excitation stored in remote atomic ensembles , 2005, Nature.

[61]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[62]  J. Preskill,et al.  Encoding a qubit in an oscillator , 2000, quant-ph/0008040.

[63]  J. Cirac,et al.  Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network , 1996, quant-ph/9611017.

[64]  C. Monroe,et al.  Quantum Connections. , 2016, Scientific American.