MOF-based electronic and opto-electronic devices.

Metal-organic frameworks (MOFs) are a class of hybrid materials with unique optical and electronic properties arising from rational self-assembly of the organic linkers and metal ions/clusters, yielding myriads of possible structural motifs. The combination of order and chemical tunability, coupled with good environmental stability of MOFs, are prompting many research groups to explore the possibility of incorporating these materials as active components in devices such as solar cells, photodetectors, radiation detectors, and chemical sensors. Although this field is only in its incipiency, many new fundamental insights relevant to integrating MOFs with such devices have already been gained. In this review, we focus our attention on the basic requirements and structural elements needed to fabricate MOF-based devices and summarize the current state of MOF research in the area of electronic, opto-electronic and sensor devices. We summarize various approaches to designing active MOFs, creation of hybrid material systems combining MOFs with other materials, and assembly and integration of MOFs with device hardware. Critical directions of future research are identified, with emphasis on achieving the desired MOF functionality in a device and establishing the structure-property relationships to identify and rationalize the factors that impact device performance.

[1]  T. Bein,et al.  Directing the structure of metal-organic frameworks by oriented surface growth on an organic monolayer. , 2008, Angewandte Chemie.

[2]  J. Laird,et al.  Highly luminescent metal-organic frameworks through quantum dot doping. , 2012, Small.

[3]  T. Tachikawa,et al.  Photoinduced Charge-Transfer Processes on MOF-5 Nanoparticles: Elucidating Differences between Metal-Organic Frameworks and Semiconductor Metal Oxides , 2008 .

[4]  Matthew C. Dixon,et al.  Kinetics and mechanism of metal–organic framework thin film growth: systematic investigation of HKUST-1 deposition on QCM electrodes , 2012 .

[5]  J. Torrance The difference between metallic and insulating salts of tetracyanoquinodimethone (TCNQ): how to design an organic metal , 1979 .

[6]  M. Dincǎ,et al.  High charge mobility in a tetrathiafulvalene-based microporous metal-organic framework. , 2012, Journal of the American Chemical Society.

[7]  M. Allendorf,et al.  HKUST-1 coated piezoresistive microcantilever array for volatile organic compound sensing , 2013 .

[8]  Hae‐Kwon Jeong,et al.  Heteroepitaxial Growth of Isoreticular Metal−Organic Frameworks and Their Hybrid Films , 2010 .

[9]  Naoki Toyota,et al.  Control of charge transfer in a series of Ru2(II,II)/TCNQ two-dimensional networks by tuning the electron affinity of TCNQ units: a route to synergistic magnetic/conducting materials. , 2010, Journal of the American Chemical Society.

[10]  C. Wöll,et al.  Layer-by-layer liquid-phase epitaxy of crystalline coordination polymers at surfaces. , 2009, Angewandte Chemie.

[11]  Y. Chabal,et al.  When metal organic frameworks turn into linear magnets , 2013, 1302.6886.

[12]  David Farrusseng,et al.  Metal-Organic Frameworks: Applications from Catalysis to Gas Storage , 2011 .

[13]  J. F. Stoddart,et al.  Large-Pore Apertures in a Series of Metal-Organic Frameworks , 2012, Science.

[14]  Mingdeng Wei,et al.  Metal–organic frameworks: promising materials for improving the open circuit voltage of dye-sensitized solar cells , 2011 .

[15]  W. Marsden I and J , 2012 .

[16]  W. Jin,et al.  A highly thermally stable ferroelectric metal-organic framework and its thin film with substrate surface nature dependent morphology. , 2011, Journal of the American Chemical Society.

[17]  M. Allendorf,et al.  Conductivity, Doping, and Redox Chemistry of a Microporous Dithiolene-Based Metal−Organic Framework , 2010 .

[18]  J. Li,et al.  A family of 3D lanthanide–organic frameworks constructed from parallelogram secondary building units: synthesis, structures and properties , 2014 .

[19]  Hanhua Zhao,et al.  New Insight into the Nature of Cu(TCNQ): Solution Routes to Two Distinct Polymorphs and Their Relationship to Crystalline Films That Display Bistable Switching Behavior , 1999 .

[20]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[21]  P. Jain,et al.  Dimethylammonium copper formate [(CH 3 ) 2 NH 2 ]Cu(HCOO) 3 : A metal-organic framework with quasi-one-dimensional antiferromagnetism and magnetostriction , 2013 .

[22]  Michael D. McGehee,et al.  Nanostructured Organic—Inorganic Hybrid Solar Cells , 2009 .

[23]  Cai Shen,et al.  Redox mediation enabled by immobilised centres in the pores of a metal-organic framework grown by liquid phase epitaxy. , 2012, Chemical communications.

[24]  R. Schmid,et al.  Metal@MOF: loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. , 2005, Angewandte Chemie.

[25]  A. Corma,et al.  Metal–organic frameworks as semiconductors , 2010 .

[26]  S. Kitagawa,et al.  Binary Janus porous coordination polymer coatings for sensor devices with tunable analyte affinity. , 2013, Angewandte Chemie.

[27]  Cheng Wang,et al.  Diffusion-controlled luminescence quenching in metal-organic frameworks. , 2011, Journal of the American Chemical Society.

[28]  Hong-Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[29]  P. Jain,et al.  Tuning the ferroelectric polarization in a multiferroic metal-organic framework. , 2013, Journal of the American Chemical Society.

[30]  D. D’Alessandro,et al.  Towards Conducting Metal-Organic Frameworks , 2011 .

[31]  Kimoon Kim,et al.  Proton conduction in metal-organic frameworks and related modularly built porous solids. , 2013, Angewandte Chemie.

[32]  M. Allendorf,et al.  Assessing the purity of metal-organic frameworks using photoluminescence: MOF-5, ZnO quantum dots, and framework decomposition. , 2010, Journal of the American Chemical Society.

[33]  Norman Sutin,et al.  Optical transitions of symmetrical mixed-valence systems in the Class II-III transition regime. , 2002, Chemical Society reviews.

[34]  Cheng Wang,et al.  Pt nanoparticles@photoactive metal-organic frameworks: efficient hydrogen evolution via synergistic photoexcitation and electron injection. , 2012, Journal of the American Chemical Society.

[35]  M. Robin The Color and Electronic Configurations of Prussian Blue , 1962 .

[36]  Hiroaki Yamanaka,et al.  Surface nano-architecture of a metal-organic framework. , 2010, Nature materials.

[37]  G. Wiederrecht,et al.  Light-harvesting and ultrafast energy migration in porphyrin-based metal-organic frameworks. , 2013, Journal of the American Chemical Society.

[38]  Bong Jin Hong,et al.  Light-harvesting metal-organic frameworks (MOFs): efficient strut-to-strut energy transfer in bodipy and porphyrin-based MOFs. , 2011, Journal of the American Chemical Society.

[39]  R. Fischer,et al.  Liquid-phase epitaxy of metal organic framework thin films , 2011 .

[40]  B. Sumpter,et al.  Electronic structure and properties of isoreticular metal-organic frameworks: the case of M-IRMOF1 (M = Zn, Cd, Be, Mg, and Ca). , 2005, The Journal of chemical physics.

[41]  Y. Einaga,et al.  Electronic conductivity in Berlin green and Prussian blue , 2011 .

[42]  S. Kitagawa,et al.  Molecular decoding using luminescence from an entangled porous framework , 2011, Nature Communications.

[43]  Yuan-zong Li,et al.  What Is Responsible for the Initiating Chemistry of Iron-Mediated Lipid Peroxidation: An Update. (Chem. Rev. 2007, 107, 748−766. Published on the Web February 28, 2007.) , 2007 .

[44]  G. Shimizu,et al.  A water-stable metal-organic framework with highly acidic pores for proton-conducting applications. , 2013, Journal of the American Chemical Society.

[45]  Wenbin Lin,et al.  Light harvesting in microscale metal-organic frameworks by energy migration and interfacial electron transfer quenching. , 2011, Journal of the American Chemical Society.

[46]  Dongpeng Yan,et al.  Tuning Fluorescent Molecules by Inclusion in a Metal–Organic Framework: An Experimental and Computational Study , 2012 .

[47]  M. Allendorf,et al.  Connecting structure with function in metal–organic frameworks to design novel photo- and radioluminescent materials , 2012 .

[48]  M. Tu,et al.  Multi Variant Surface Mounted Metal–Organic Frameworks , 2013 .

[49]  Bo Liu,et al.  Metal–organic framework-based devices: separation and sensors , 2012 .

[50]  M. Allendorf,et al.  Influence of connectivity and porosity on ligand-based luminescence in zinc metal-organic frameworks. , 2007, Journal of the American Chemical Society.

[51]  R. Fischer,et al.  Metal-organic framework thin films: from fundamentals to applications. , 2012, Chemical reviews.

[52]  Lili Wen,et al.  Multifunctional amino-decorated metal–organic frameworks: nonlinear-optic, ferroelectric, fluorescence sensing and photocatalytic properties , 2012 .

[53]  B. Ferrer,et al.  Semiconductor behavior of a metal-organic framework (MOF). , 2007, Chemistry.

[54]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[55]  M. Kondo,et al.  MOF-on-MOF heteroepitaxy: perfectly oriented [Zn2(ndc)2(dabco)]n grown on [Cu2(ndc)2(dabco)]n thin films. , 2011, Dalton transactions.

[56]  O. Shekhah,et al.  Step-by-step route for the synthesis of metal-organic frameworks. , 2007, Journal of the American Chemical Society.

[57]  Bryan M. Wong,et al.  Novel metal–organic framework linkers for light harvesting applications , 2014 .

[58]  G. Seifert,et al.  Metal-organic frameworks as promising candidates for future ultralow-k dielectrics , 2010 .

[59]  C. Wöll,et al.  Selective nucleation and growth of metal-organic open framework thin films on patterned COOH/CF3-terminated self-assembled monolayers on Au(111). , 2005, Journal of the American Chemical Society.

[60]  M. Eddaoudi,et al.  Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. , 2005, Journal of the American Chemical Society.

[61]  R. Fischer,et al.  Trapping metal-organic framework nanocrystals: an in-situ time-resolved light scattering study on the crystal growth of MOF-5 in solution. , 2007, Journal of the American Chemical Society.

[62]  Gerard P M van Klink,et al.  Isoreticular MOFs as efficient photocatalysts with tunable band gap: an operando FTIR study of the photoinduced oxidation of propylene. , 2008, ChemSusChem.

[63]  B. Ferrer,et al.  Photochemical Response of Commercial MOFs: Al2(BDC)3 and Its Use As Active Material in Photovoltaic Devices , 2011 .

[64]  A. Heeger,et al.  Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials , 2001, Angewandte Chemie.

[65]  Liang Chen,et al.  First-principles study of microporous magnets M-MOF-74 (M = Ni, Co, Fe, Mn): the role of metal centers. , 2013, Inorganic Chemistry.

[66]  Shu Seki,et al.  Mn2(2,5-disulfhydrylbenzene-1,4-dicarboxylate): a microporous metal-organic framework with infinite (-Mn-S-)∞ chains and high intrinsic charge mobility. , 2013, Journal of the American Chemical Society.

[67]  Zhengbang Wang,et al.  On the dielectric and optical properties of surface-anchored metal-organic frameworks: A study on epitaxially grown thin films , 2013 .

[68]  Omar K Farha,et al.  Metal-organic framework materials as chemical sensors. , 2012, Chemical reviews.

[69]  Brian P. Mehl,et al.  Triplet Excitation Energy Dynamics in Metal–Organic Frameworks , 2013 .

[70]  Osami Sakata,et al.  Highly crystalline nanofilm by layering of porphyrin metal-organic framework sheets. , 2011, Journal of the American Chemical Society.

[71]  R. Fischer,et al.  Room temperature preparation method for thin MOF-5 films on metal and fused silica surfaces using the controlled SBU approach , 2012 .

[72]  Dunru Zhu,et al.  Two 3D metal–organic frameworks with different topologies, thermal stabilities and magnetic properties , 2012 .

[73]  G. Wiederrecht,et al.  Energy transfer from quantum dots to metal-organic frameworks for enhanced light harvesting. , 2013, Journal of the American Chemical Society.

[74]  Takhee Lee,et al.  Single Molecule Electronic Devices , 2011, Advanced materials.

[75]  F. Jaouen,et al.  Metal organic frameworks for electrochemical applications , 2012 .

[76]  S. Gou,et al.  A multifunctional three-dimensional uninodal eight-connected metal–organic framework based on pentanuclear cadmium subunits: New topology, fluorescent and NLO properties , 2012 .

[77]  Bryan M. Wong,et al.  Energy and charge transfer by donor–acceptor pairs confined in a metal–organic framework: a spectroscopic and computational investigation , 2014 .

[78]  A. Fujiwara,et al.  Step-by-step fabrication of a highly oriented crystalline three-dimensional pillared-layer-type metal-organic framework thin film confirmed by synchrotron X-ray diffraction. , 2012, Journal of the American Chemical Society.

[79]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[80]  Yi Wang,et al.  Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. , 2012, Nature chemistry.

[81]  Andrew G. Glen,et al.  APPL , 2001 .

[82]  A. Matzger,et al.  MOF@MOF: microporous core-shell architectures. , 2009, Chemical communications.

[83]  William R. Dichtel,et al.  High hopes: can molecular electronics realise its potential? , 2012, Chemical Society reviews.

[84]  M. Allendorf,et al.  MOF @ MEMS: Design optimization for high sensitivity chemical detection , 2012 .

[85]  Takehiko Mori,et al.  Conducting organic frameworks based on a main-group metal and organocyanide radicals. , 2013, Chemistry.

[86]  Christopher H. Hendon,et al.  Conductive metal-organic frameworks and networks: fact or fantasy? , 2012, Physical chemistry chemical physics : PCCP.

[87]  Bastian Rühle,et al.  One-dimensional metal–organic framework photonic crystals used as platforms for vapor sorption , 2012 .

[88]  S. Wannapaiboon,et al.  Assessing the adsorption selectivity of linker functionalized, moisture-stable metal-organic framework thin films by means of an environment-controlled quartz crystal microbalance. , 2012, Chemical communications.

[89]  O. Shekhah,et al.  Growth mechanism of metal-organic frameworks: insights into the nucleation by employing a step-by-step route. , 2009, Angewandte Chemie.

[90]  Jeffrey R. Long,et al.  Evaluating metal–organic frameworks for natural gas storage , 2014 .

[91]  O. Shekhah,et al.  Layer-by-layer growth of oriented metal organic polymers on a functionalized organic surface. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[92]  M. Tu,et al.  Metal-organic framework thin films: crystallite orientation dependent adsorption. , 2013, Angewandte Chemie.

[93]  H. Miyasaka Control of charge transfer in donor/acceptor metal-organic frameworks. , 2013, Accounts of chemical research.

[94]  G. Seifert,et al.  Metal-organic frameworks: structural, energetic, electronic, and mechanical properties. , 2007, The journal of physical chemistry. B.

[95]  M. Schröder Functional Metal-Organic Frameworks: Gas Storage, Separation and Catalysis , 2010 .

[96]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[97]  Zhan Shi,et al.  Cation sensing by a luminescent metal-organic framework with multiple Lewis basic sites. , 2013, Inorganic chemistry.

[98]  K. Müller‐Buschbaum,et al.  Engineering metal-based luminescence in coordination polymers and metal-organic frameworks. , 2013, Chemical Society reviews.

[99]  I. Uchida,et al.  Nature of intervalence charge-transfer bands in Prussian blues , 1986 .

[100]  Zhigang Xie,et al.  Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. , 2011, Journal of the American Chemical Society.

[101]  Jean-Luc Brédas,et al.  Charge transport in organic semiconductors. , 2007, Chemical reviews.

[102]  C. Wöll,et al.  Epitaxially grown metal-organic frameworks , 2012 .

[103]  H. Fjellvåg,et al.  Theoretical investigations on the chemical bonding, electronic structure, and optical properties of the metal-organic framework MOF-5. , 2010, Inorganic chemistry.

[104]  Freek Kapteijn,et al.  Enhancing optical absorption of metal-organic frameworks for improved visible light photocatalysis. , 2013, Chemical communications.

[105]  M. Tu,et al.  Programmed functionalization of SURMOFs via liquid phase heteroepitaxial growth and post-synthetic modification. , 2013, Dalton transactions.

[106]  R. Fischer,et al.  Nanometer-sized titania hosted inside MOF-5. , 2009, Chemical communications.

[107]  Christian J. Doonan,et al.  Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks , 2010, Science.

[108]  D. Song,et al.  A luminescent metal-organic framework as a turn-on sensor for DMF vapor. , 2013, Angewandte Chemie.

[109]  A Alec Talin,et al.  A roadmap to implementing metal-organic frameworks in electronic devices: challenges and critical directions. , 2011, Chemistry.

[110]  S. Kitagawa,et al.  Ion conductivity and transport by porous coordination polymers and metal-organic frameworks. , 2013, Accounts of chemical research.

[111]  Yanfeng Yue,et al.  Luminescent functional metal-organic frameworks. , 2012, Chemical Reviews.

[112]  O. Shekhah Layer-by-Layer Method for the Synthesis and Growth of Surface Mounted Metal-Organic Frameworks (SURMOFs) , 2010, Materials.

[113]  M. Allendorf,et al.  Luminescent metal-organic frameworks. , 2009, Chemical Society reviews.

[114]  O. Shekhah,et al.  Surface-anchored MOF-based photonic antennae. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[115]  Bartolomeo Civalleri,et al.  Ab-initio prediction of materials properties with CRYSTAL: MOF-5 as a case study , 2006 .

[116]  E. Saiz,et al.  Metal-Organic Framework ZIF-8 Films As Low-κ Dielectrics in Microelectronics , 2013 .

[117]  S. Forrest,et al.  Molecular and morphological influences on the open circuit voltages of organic photovoltaic devices. , 2009, Journal of the American Chemical Society.

[118]  A. Baiker,et al.  Mixed-Linker Metal-Organic Frameworks as Catalysts for the Synthesis of Propylene Carbonate from Propylene Oxide and CO2 , 2009 .

[119]  M. Tu,et al.  Heteroepitaxial growth of surface mounted metal–organic framework thin films with hybrid adsorption functionality , 2014 .

[120]  Zhihua Chen,et al.  Band-like electron transport in organic transistors and implication of the molecular structure for performance optimization. , 2012, Advanced materials.

[121]  Keiji Nakagawa,et al.  Heterogeneously hybridized porous coordination polymer crystals: fabrication of heterometallic core-shell single crystals with an in-plane rotational epitaxial relationship. , 2009, Angewandte Chemie.

[122]  S. Kitagawa,et al.  Control of the charge-transfer interaction between a flexible porous coordination host and aromatic guests by framework isomerism , 2011 .

[123]  Vitalie Stavila,et al.  Ultrasensitive humidity detection using metal-organic framework-coated microsensors. , 2012, Analytical chemistry.

[124]  C. Doherty,et al.  Combining UV Lithography and an Imprinting Technique for Patterning Metal‐Organic Frameworks , 2013, Advanced materials.

[125]  M. Allendorf,et al.  Metal‐Organic Frameworks: A Rapidly Growing Class of Versatile Nanoporous Materials , 2011, Advanced materials.

[126]  A Alec Talin,et al.  Stress-induced chemical detection using flexible metal-organic frameworks. , 2008, Journal of the American Chemical Society.

[127]  Andreas F. Rausch,et al.  The triplet state of organo-transition metal compounds. Triplet harvesting and singlet harvesting for efficient OLEDs , 2011 .

[128]  O. Shekhah,et al.  Thin films of metal-organic frameworks. , 2009, Chemical Society reviews.