A systematic approach toward error structure identification for impedance spectroscopy

The state-of-the-art is reviewed for the use of measurement models for assessing the stochastic and bias error structure of impedance measurements. The methods are illustrated for published impedance data that contain both capacitive and inductive components. This systematic error analysis demonstrates that, in spite of differences between sequential impedance scans and the appearance of inductive and incomplete capacitive loops, the individual data sets represented a pseudo-stationary system and could be interpreted in terms of a stationary model.

[1]  Mark E. Orazem,et al.  Application of Measurement Models to Impedance Spectroscopy III . Evaluation of Consistency with the Kramers‐Kronig Relations , 1995 .

[2]  M. Orazem,et al.  Influence of surface phenomena on the impedance response of a rotating disk electrode , 1999 .

[3]  N. Draper,et al.  Applied Regression Analysis. , 1967 .

[4]  M. Orazem,et al.  Modeling of the cast iron/drinking water system by electrochemical impedance spectroscopy , 1999 .

[5]  Digby D. Macdonald,et al.  Application of Kramers‐Kronig Transforms in the Analysis of Electrochemical Impedance Data II . Transformations in the Complex Plane , 1986 .

[6]  Bernard A. Boukamp,et al.  A Linear Kronig‐Kramers Transform Test for Immittance Data Validation , 1995 .

[7]  George A. F. Seber,et al.  Linear regression analysis , 1977 .

[8]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[9]  J. Dygas,et al.  Variance of errors and elimination of outliers in the least squares analysis of impedance spectra , 1999 .

[10]  R. Sheppard The least-squares analysis of complex weighted data with dielectric applications , 1973 .

[11]  William J. Thompson,et al.  The collected works of john w. tukey , 1991 .

[12]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[13]  James Ross Macdonald,et al.  IMPEDANCE SPECTROSCOPY: OLD PROBLEMS AND NEW DEVELOPMENTS , 1990 .

[14]  Mark E. Orazem,et al.  Measurement Models for Electrochemical Impedance Spectroscopy I . Demonstration of Applicability , 1992 .

[15]  Digby D. Macdonald,et al.  Application of Kramers‐Kronig Transforms in the Analysis of Electrochemical Systems I . Polarization Resistance , 1985 .

[16]  Pavan K. Shukla,et al.  Extension of the measurement model approach for deconvolution of underlying distributions for impedance measurements , 2002 .

[17]  Oscar D. Crisalle,et al.  On the Error Structure of Impedance Measurements Series Expansions , 2003 .

[18]  M. Orazem,et al.  Effect of cations on the diffusivity of the charge carriers in polyaniline membranes , 1999 .

[19]  B. Boukamp A Nonlinear Least Squares Fit procedure for analysis of immittance data of electrochemical systems , 1986 .

[20]  J. Macdonald,et al.  Alternatives to Kronig-Kramers transformation and testing, and estimation of distributions , 1994 .

[21]  J. Ross Macdonald,et al.  Applicability and power of complex nonlinear least squares for the analysis of impedance and admittance data , 1982 .

[22]  M. Orazem,et al.  The Error Structure of Impedance Spectra for Systems with a Large Ohmic Resistance with Respect to the Polarization Impedance , 1996 .

[23]  M. Orazem,et al.  A Mathematical Model for the Radially Dependent Impedance of a Rotating Disk Electrode , 1999 .

[24]  W. Kenan,et al.  Impedance Spectroscopy: Emphasizing Solid Materials and Systems , 1987 .

[25]  M. Urquidi-Macdonald,et al.  Theoretical Distribution Functions for the Breakdown of Passive Films , 1987 .

[26]  Applicationi of Measurement Models for Interpretation of Impedance Spectra for Corrosion , 1998 .

[27]  R. Kronig On the Theory of Dispersion of X-Rays , 1926 .

[28]  P. Żółtowski The error function for fitting of models to immittance data , 1984 .

[29]  Bernard A. Boukamp,et al.  A package for impedance/admittance data analysis , 1986 .

[30]  J. Macdonald Some new directions in impedance spectroscopy data analysis , 1993 .

[31]  M. Orazem,et al.  Application of Measurement Models to Electrohydrodynamic Impedance Spectroscopy , 1996 .

[32]  M. W. Breiter,et al.  Measurements of large impedances in a wide temperature and frequency range , 1996 .

[33]  J. Schoukens,et al.  Key issues for reproducible impedance measurements and their well-founded error analysis in a silver electrodeposition system , 2002 .

[34]  L. García-Rubio,et al.  Application of Measurement Models to Impedance Spectroscopy II . Determination of the Stochastic Contribution to the Error Structure , 1995 .

[35]  S. D. Torresi,et al.  Ac-impedance and Raman spectroscopy study of the electrochemical behaviour of pure aluminium in citric acid media , 2001 .

[36]  E. Grant,et al.  Least squares analysis of complex data with applications to permittivity measurements , 1970 .

[37]  J. Ross Macdonald,et al.  A flexible procedure for analyzing impedance spectroscopy results: Description and illustrations , 1987 .

[38]  J. A. Garber,et al.  Analysis of Impedance and Admittance Data for Solids and Liquids , 1977 .

[39]  W. J. Langford Statistical Methods , 1959, Nature.

[40]  Thermally Stimulated Deep‐Level Impedance Spectroscopy Application to an n‐GaAs Schottky Diode , 1996 .

[41]  Mark E. Orazem,et al.  Development of physico-chemical models for electrochemical impedance spectroscopy , 1993 .

[42]  Oscar D. Crisalle,et al.  On the Error Structure of Impedance Measurements Simulation of FRA Instrumentation , 2003 .