A Uniform Model for Kirillov–Reshetikhin Crystals II. Alcove Model, Path Model, and $P=X$

Author(s): Lenart, Cristian; Naito, Satoshi; Sagaki, Daisuke; Schilling, Anne; Shimozono, Mark | Abstract: We establish the equality of the specialization $P_\lambda(x;q,0)$ of the Macdonald polynomial at $t=0$ with the graded character $X_\lambda(x;q)$ of a tensor product of "single-column" Kirillov-Reshetikhin (KR) modules for untwisted affine Lie algebras. This is achieved by constructing two uniform combinatorial models for the crystals associated with the mentioned tensor products: the quantum alcove model (which is naturally associated to Macdonald polynomials), and the quantum Lakshmibai-Seshadri path model. We provide an explicit affine crystal isomorphism between the two models, and realize the energy function in both models. In particular, this gives the first proof of the positivity of the $t = 0$ limit of the symmetric Macdonald polynomial in the untwisted and non-simply-laced cases, when it is expressed as a linear combination of the irreducible characters for a finite-dimensional simple Lie subalgebra, as well as a representation-theoretic meaning of the coefficients in this expression in terms of degree functions.

[1]  Mixed Bruhat Operators and Yang-Baxter Equations for Weyl Groups , 1998, math/9805079.

[2]  Nonsymmetric Macdonald polynomials and Demazure characters , 2001, math/0105061.

[3]  Sergey Fomin,et al.  Quantum Schubert polynomials , 1997 .

[4]  Anne Schilling,et al.  Demazure Crystals, Kirillov-Reshetikhin Crystals, and the Energy Function , 2011, Electron. J. Comb..

[5]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[6]  S. Naito,et al.  Crystal structure on the set of Lakshmibai–Seshadri paths of an arbitrary level‐zero shape , 2008 .

[7]  I. G. MacDonald,et al.  Affine Hecke Algebras and Orthogonal Polynomials , 2003 .

[8]  C. Lenart,et al.  A uniform realization of the combinatorial R-matrix for column shape Kirillov–Reshetikhin crystals , 2015, Advances in Mathematics.

[9]  Peter Littelmann,et al.  Paths and root operators in representation theory , 1995 .

[10]  Path model for a level-zero extremal weight module over a quantum affine algebra II , 2006 .

[11]  Masato Okado,et al.  Remarks on Fermionic Formula , 1998, math/9812022.

[12]  Thomas Lam,et al.  Quantum cohomology of G/P and homology of affine Grassmannian , 2007, 0705.1386.

[13]  Explicit description of the action of root operators on quantum Lakshmibai-Seshadri paths , 2013 .

[14]  Anne Schilling,et al.  X=M for symmetric powers , 2006 .

[15]  Masaki Kashiwara On level-zero representation of quantized affine algebras , 2000 .

[16]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[17]  M. Finkelberg,et al.  Weyl modules and $$q$$q-Whittaker functions , 2012, 1203.1583.

[18]  Kostka polynomials and energy functions in solvable lattice models , 1995, q-alg/9512027.

[19]  M. Finkelberg,et al.  Semi-infinite Schubert varieties and quantum K-theory of flag manifolds , 2011, 1111.2266.

[20]  S. Grushevsky,et al.  Singularities of the Theta Divisor at Points of Order Two , 2007, math/0701423.

[21]  M. Okado,et al.  Affine crystals, one-dimensional sums and parabolic Lusztig q-analogues , 2010, 1002.3715.

[22]  A. Björner,et al.  Combinatorics of Coxeter Groups , 2005 .

[23]  Anne Schilling,et al.  A Uniform Model for Kirillov–Reshetikhin Crystals I: Lifting the Parabolic Quantum Bruhat Graph , 2012, 1211.2042.

[24]  S. Naito,et al.  Lakshmibai–Seshadri paths of level-zero shape and one-dimensional sums associated to level-zero fundamental representations , 2006, Compositio Mathematica.

[25]  K. Anton Highest weight categories and Macdonald polynomials , 2013 .

[26]  B. Ion,et al.  BGG reciprocity for current algebras , 2011, Compositio Mathematica.

[27]  ON THE COMBINATORICS OF CRYSTAL GRAPHS, I. LUSZTIG'S INVOLUTION , 2005, math/0509200.

[28]  G. Fourier,et al.  Tensor Product Structure of Affine Demazure Modules and Limit Constructions , 2004, Nagoya Mathematical Journal.

[29]  Anne Schilling,et al.  Kirillov–Reshetikhin crystals for nonexceptional types , 2009 .

[30]  G. Fourier,et al.  A categorical approach to Weyl modules , 2009, 0906.2014.

[31]  Arun Ram,et al.  A combinatorial formula for Macdonald polynomials , 2008, 0803.1146.

[32]  Yasmine B. Sanderson On the Connection Between Macdonald Polynomials and Demazure Characters , 2000 .

[33]  Equivariant K-Chevalley rules for Kac-Moody flag manifolds , 2012, 1203.3237.

[34]  A. Postnikov Quantum Bruhat graph and Schubert polynomials , 2002, math/0206077.

[35]  Jin Hong,et al.  Introduction to Quantum Groups and Crystal Bases , 2002 .

[36]  Affine Weyl Groups in K-Theory and Representation Theory , 2003, math/0309207.

[37]  V. Kac Infinite dimensional Lie algebras: Frontmatter , 1990 .

[38]  Jayce R. Getz,et al.  Twisted relative trace formulae with a view towards unitary groups , 2014, 1701.01762.

[39]  Quadratic Algebras Related to the Bi-Hamiltonian Operad , 2006, math/0607289.

[40]  Masaki Kashiwara,et al.  Crystal Graphs for Representations of the q-Analogue of Classical Lie Algebras , 1994 .

[41]  Regular Nilpotent Elements and Quantum Groups , 1998, math/9812107.

[42]  Semi-infinite Lakshmibai-Seshadri path model for level-zero extremal weight modules over quantum affine algebras , 2014, 1402.3884.

[43]  A. Schilling,et al.  Quantum Lakshmibai-Seshadri paths and root operators , 2013, 1308.3529.

[44]  A. Schilling,et al.  Perfectness of Kirillov-Reshetikhin crystals for nonexceptional types , 2008, 0811.1604.

[45]  C. Lenart,et al.  A generalization of the alcove model and its applications , 2011, 1112.2216.

[46]  Extremal weight modules of quantum affine algebras , 2002, math/0204183.

[47]  N. Reshetikhin,et al.  Representations of Yangians and multiplicities of occurrence of the irreducible components of the tensor product of representations of simple Lie algebras , 1990 .

[48]  S. Naito,et al.  Crystal of Lakshmibai-Seshadri paths associated to an integral weight of level zero for an affine Lie algebra , 2005 .

[49]  A. Schilling,et al.  Crystal energy functions via the charge in types A and C , 2011, 1107.4169.

[50]  On the quantum product of Schubert classes , 2001, math/0112183.

[51]  S. Naito,et al.  Construction of Perfect Crystals Conjecturally Corresponding to Kirillov-Reshetikhin Modules over Twisted Quantum Affine Algebras , 2005, math/0503287.

[52]  A combinatorial model for crystals of Kac-Moody algebras , 2005, math/0502147.

[53]  S. Yamane Perfect Crystals ofUq(G(1)2) , 1998 .

[54]  Matthias Dyer,et al.  Hecke algebras and shellings of Bruhat intervals , 1993 .

[55]  Demazure submodules of level-zero extremal weight modules and specializations of Macdonald polynomials , 2014, 1404.2436.

[56]  K. Misra,et al.  Demazure Modules and Perfect Crystals , 1996, q-alg/9607011.

[57]  Cristian Lenart,et al.  From Macdonald polynomials to a charge statistic beyond type A , 2011, J. Comb. Theory, Ser. A.

[58]  A. Schilling,et al.  Crystal energy via charge in types A and C , 2012 .

[59]  Masato Okado,et al.  Paths, crystals and fermionic formulae , 2001 .

[60]  Katsuyuki Naoi Weyl modules, Demazure modules and finite crystals for non-simply laced type , 2010, 1012.5480.

[61]  M. Shimozono,et al.  Specializations of nonsymmetric Macdonald–Koornwinder polynomials , 2013, 1310.0279.