Regular and Chaotic Dynamics in the Mean-Motion Resonances: Implications for the Structure and Evolution of the Asteroid Belt

This chapter summarizes the achievements over the last decade in understanding the effect of mean-motion resonances on asteroid orbits. The developments from the beginning of the 1990s are many. They range from a complete theoretical description of the secular dynamics in the mean-motion resonances associated with the Kirkwood gaps to the discovery of the threebody resonances and slow chaotic phenomena acting throughout the asteroid belt. Consequences arising from these results have required remodeling the process of asteroid delivery to the Earthcrossing orbits.

[1]  B. Chirikov A universal instability of many-dimensional oscillator systems , 1979 .

[2]  M. Moons,et al.  Numerical Evidence on the Chaotic Nature of the 3/1 Mean Motion Commensurability , 1995 .

[3]  D. Brouwer The problem of the Kirkwood gaps in the asteroid belt , 1963 .

[4]  J. Laskar Secular evolution of the solar system over 10 million years , 1988 .

[5]  M. Yoshikawa Motions of asteroids at the Kirkwood gaps: I. On the 3:1 resonance with Jupiter , 1990 .

[6]  D. Nesvorný,et al.  Asteroids in the 2 : 1 resonance with Jupiter: dynamics and size distribution , 2002 .

[7]  Andrea Milani,et al.  Stable Chaos in the Asteroid Belt , 1997 .

[8]  S. Ferraz-Mello,et al.  Escape of asteroids from the Hecuba gap , 1997 .

[9]  M. Moons,et al.  Dynamical Structure of the 2/1 Commensurability with Jupiter and the Origin of the Resonant Asteroids , 1998 .

[10]  R. Gomes Dynamical Effects of Planetary Migration on the Primordial Asteroid Belt , 1997 .

[11]  D. Vokrouhlický,et al.  The Effect of Yarkovsky Thermal Forces on the Dynamical Evolution of Asteroids and Meteoroids , 2002 .

[12]  Karri Muinonen,et al.  A Public-Domain Asteroid Orbit Database , 1994 .

[13]  G. Benettin,et al.  Kolmogorov Entropy and Numerical Experiments , 1976 .

[14]  Jacques Laskar,et al.  Introduction to Frequency Map Analysis , 1999 .

[15]  Giovanni B. Valsecchi,et al.  Asteroids falling into the Sun , 1994, Nature.

[16]  Giovanni Gallavotti,et al.  Stability of motions near resonances in quasi-integrable Hamiltonian systems , 1986 .

[17]  M. Holman,et al.  Chaos in High-Order Mean Resonances in the Outer Asteroid Belt , 1996 .

[18]  Harold F. Levison,et al.  The Long-Term Dynamical Behavior of Short-Period Comets , 1993 .

[19]  Alessandro Morbidelli,et al.  Asteroid Families Close to Mean Motion Resonances: Dynamical Effects and Physical Implications , 1995 .

[20]  Alessandro Morbidelli,et al.  The Flora Family: A Case of the Dynamically Dispersed Collisional Swarm? , 2002 .

[21]  Julio A. Fernández,et al.  Some dynamical aspects of the accretion of Uranus and Neptune: The exchange of orbital angular momentum with planetesimals , 1984 .

[22]  Morbidelli,et al.  Origin of multikilometer earth- and mars-crossing asteroids: A quantitative simulation , 1998, Science.

[23]  A. Morbidelli The Kirkwood Gap at the 2/1 Commensurability With Jupiter: New Numerical Results , 1996 .

[24]  M. Moons,et al.  Secular Resonances in Mean Motion Commensurabilities: The 2/1 and 3/2 Cases , 1993 .

[25]  J. Wisdom,et al.  Symplectic maps for the N-body problem. , 1991 .

[26]  Jack Wisdom,et al.  The Origin of the Kirkwood Gaps: A Mapping for Asteroidal Motion Near the 3/1 Commensurability , 1982 .

[27]  Alessandro Morbidelli,et al.  Modern celestial mechanics : aspects of solar system dynamics , 2002 .

[28]  W. Bottke,et al.  Origin and Evolution of Near-Earth Objects , 2002 .

[29]  D. Nesvorný,et al.  On the Asteroidal Population of the First-Order Jovian Resonances , 1997 .

[30]  On the Origin of Chaos in the Asteroid Belt , 1998 .

[31]  P. Saha Simulating the 3:1 Kirkwood gap , 1992 .

[32]  S. Ferraz-Mello Kirkwood Gaps and Resonant Groups , 1994 .

[33]  A. Morbidelli,et al.  Numerous Weak Resonances Drive Asteroids toward Terrestrial Planets Orbits , 1999 .

[34]  S. Ferraz-Mello,et al.  A model for the study of very-high-eccentricity asteroidal motion: the 3:1 resonance. , 1991 .

[35]  J. Liou,et al.  Depletion of the Outer Asteroid Belt , 1997, Science.

[36]  Andrea Milani,et al.  Asteroid Proper Elements and the Dynamical Structure of the Asteroid Main Belt , 1994 .

[37]  Andrea Milani,et al.  An example of stable chaos in the Solar System , 1992, Nature.

[38]  The Determinant Role of Jupiter's Great Inequality in the Depletion of the Hecuba Gap , 1998 .

[39]  C. Beaugé Asymmetric librations in exterior resonances , 1994 .

[40]  A. Morbidelli,et al.  An Analytic Model of Three-Body Mean Motion Resonances , 1998 .

[41]  M. Holman,et al.  Diffusive chaos in the outer asteroid belt. , 1997 .

[42]  M. Holman,et al.  Chaos in the solar system , 1996, astro-ph/0111600.

[43]  S. Ferraz-Mello Dynamics of the asteroidal 2/1 resonance , 1994 .

[44]  A. Morbidelli,et al.  Three-Body Mean Motion Resonances and the Chaotic Structure of the Asteroid Belt , 1998 .

[45]  Harold F. Levison,et al.  Dynamical Lifetimes of Objects Injected into Asteroid Belt Resonances , 1997 .

[46]  P. Farinella,et al.  Meteorites from the asteroid 6 Hebe , 1993 .

[47]  K. Meyer,et al.  Regular and Stochastic Motion (A. J. Lichtenberg and M. A. Lieberman) , 1984 .

[48]  Alain Doressoundiram,et al.  Fugitives from the Eos Family: First Spectroscopic Confirmation☆ , 2000 .

[49]  Jack Wisdom,et al.  Meteorites may follow a chaotic route to Earth , 1985, Nature.

[50]  J. Petit,et al.  Large Scattered Planetesimals and the Excitation of the Small Body Belts , 1999 .

[51]  R. Jedicke,et al.  The Orbital and Absolute Magnitude Distributions of Main Belt Asteroids , 1998 .

[52]  Very-high- eccentricity librations at some higher order resonances , 1992 .

[53]  A. Lemaitre,et al.  A perturbative treatment of the 21 Jovian resonance , 1987 .

[54]  J. Henrard,et al.  A semi-numerical perturbation method for separable hamiltonian systems , 1990 .

[55]  A. Lemaitre,et al.  A mechanism of formation for the Kirkwood gaps , 1983 .

[56]  P. Message Proceedings of the Celestial Mechanics Conference: The search for asymmetric periodic orbits in the restricted problem of three bodies , 1958 .

[57]  Secondary and Secular Resonances inside the Hecuba Gap , 1995 .

[58]  J. Wisdom,et al.  Chaotic behavior and the origin of the 3/1 Kirkwood gap , 1983 .

[59]  Clark R. Chapman,et al.  Could the Lunar “Late Heavy Bombardment” Have Been Triggered by the Formation of Uranus and Neptune? , 2001 .

[60]  Jack Wisdom,et al.  The resonance overlap criterion and the onset of stochastic behavior in the restricted three-body problem , 1980 .

[61]  M. Moons,et al.  Secular Resonances in Mean Motion Commensurabilities: The 4/1, 3/1, 5/2, and 7/3 Cases , 1995 .

[62]  吉川 真 Motions of asteroids at the Kirkwood gaps , 1989 .

[63]  S. Ferraz-Mello A symplectic mapping approach to the study of the stochasticity in asteroidal resonances , 1996 .